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ABSTRACT 
 

Investigating Virtual Globes for a Prototype Community Archive of 
3D Subsurface Data 

 
Derek C. Whitman 

Department of Civil & Environmental Engineering, BYU 
Master of Science 

 
Geoscience data sharing and processing is very advanced in terms of surface data. 

Subsurface data sharing has not received the attention that surface data sharing has received and 
so there are fewer applications or software packages which focus on it. This research is funded 
by the NSF EarthCube GEO Domain program in an effort to develop a continental-scale 
repository of 3D subsurface data to facilitate the sharing of complex 3D data and to enable the 
development of geoprocessing tools and workflows that operate on that data. The work in this 
thesis is a small part of the EarthCube project with two parts. The first part is to research current 
tools for 3D subsurface data visualization, specifically virtual globes, and to recommend one for 
use in the development of the EarthCube project. The second part is to develop an online 
prototype visualization platform for the EarthCube project referred to as the “Digital Crust” 
using the recommended virtual globe. Additional work was done with the Digital Crust to 
develop geoprocessing tools to show the ability for the Digital Crust to work with a data 
repository. These tools convert geoscience data file types, and interpolate soil cross-sections 
from borehole log data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords:  AHGW, virtual globe, geoprocessing, cloud, Digital Crust, EarthCube, CUAHSI, 
GIS, ArcGIS 
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1 INTRODUCTION 

Geospatial data is a crucial element for understanding our Earth and making important 

decisions dealing with the environment and the development of society. Three things need to be 

done with the data to make these decisions. These will be referred to as “data tasks” for the 

purposes of this thesis. 

1. The data need to be shared or made discoverable. 

2. The data need to be processed to predict outcomes. 

3. The data need to be visualized so that it can be interpreted.  

These data are often shared through database repositories that are made accessible 

through online requests to websites created by the data holders. Software packages exist for 

processing the data into results used to make decisions. 2D virtual maps and 3D virtual globes 

make data visualization more dynamic and easier to interpret. Unfortunately, most software 

applications focus on the sharing, processing, and viewing of surface data, not subsurface data.  

1.1 Review of Current Subsurface Data Applications and Repositories 

Subsurface data sharing has not received the same attention that surface data sharing has 

received. There are few applications which have developed tools for accomplishing the three 

data tasks for subsurface data and none of them accomplish all three. These applications are 

often separate from online data repositories for subsurface data. This separation of the processing 

tool from the repository requires the data to be downloaded without being viewed first then 
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moved to the processing application for viewing and processing. Many of these subsurface data 

applications which allow subsurface data visualization show the data disconnected from 

basemaps. This makes it difficult to understand the geographic location and extent of the data. 

Some of these applications include a basemap but will only show the data above the surface 

where it exists. Only some of the applications that can produce a 3D visualization of subsurface 

data also maintain the ability to perform geoprocessing calculations on the data.  

1.1.1 Canadian Groundwater Information Network 

The Groundwater Information Network (GIN) is a project developed by GeoConnections 

which has done extensive work in collecting and maintaining groundwater data for much of 

Canada (Brodaric, Sharpe et al. 2009). GIN maintains a database which makes borehole log data 

within Canada publicly available and accessible through their website. By using the “Analysis of 

Water Wells of Canada” link on the website, the user is directed to a map view of the well log 

locations within the database. This website uses the 2D Microsoft Bing maps developed in 

Silverlight. From the map the user can zoom in to well locations and get information about any 

single well or a set of wells. Some tools are provided which allow the user to draw a line across 

the map and view a 3D rendering of the soil profile under the line. Interpolating from the 

neighboring wells generates the 3D rendering which appears in another window and not in the 

map itself. To the left of the map is an information window where data to download can be 

searched. From here the well log data can be downloaded in several different Open Geospatial 

Consortium (OGC) (Consortium 2010) formats which are translated from the server on the fly. 

The GIN is an extremely valuable data repository that makes great use of subsurface 

groundwater data but still lacks the ability to show its 3D rendering of soil profiles in place with 

reference to the surface data or a basemap. 
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1.1.2  British Government 3D Geology Project 

The “Geological Surveying and Investigation in 3 Dimensions” (GSI3D) software is 

supported by the British Geological Survey (BGS) (Mathers and Kessler 2010). Although GSI3D 

was developed in Britain and focused on the geology of the British Isles it can now be 

downloaded and used for any location. The software is not free but it is offered at “competitive 

prices and on a not-for-profit basis” according to the site. GSI3D has the capability to use a 

terrain model and borehole log data in a 3D environment to build cross sections and geovolumes 

within the geographic extent of the data provided.  

This software does not show the data in a virtual globe with a basemap reference. To 

view the data in reference to a basemap it must be exported to a file format for showing in 

Google Earth. Geoprocessing calculations cannot be performed when the data is viewed in 

Google Earth and the data is shown above the virtual globe surface rather than in place below the 

surface. 

1.1.3 Unidata 

An integrated data viewer (IDV) was developed by Unidata with funding by the NSF 

(Userguide 2009). Unidata is part of the University Corporation for Atmospheric Research 

(UCAR). The IDV is a virtual globe Java application built on an OpenGL visual platform which 

allows the user to display and work with satellite imagery, gridded data, and surface, upper air, 

and radar data within a single interface. The virtual globe can be accessed through the Unidata 

home page and comes with some preloaded data sets to display. The Unidata IDV was developed 

to show surface and atmospheric data in a 3D virtual globe environment but not subsurface data. 

This IDV was used as a base for the development of the GEON IDV by UNAVCO.  
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1.1.4 GEON 

GEON is a project which began in 2002 through the San Diego Super Computing Center 

(SDSC) and was funded under the NSF Information Technology Research (ITR) program 

(Workflows and Portal). The objective of the GEON project includes hosting vast amounts of 

surface and subsurface data in a publicly and easily accessible manner that allows the data to be 

visualized and analyzed. At the GEON website under the “myGEON” tab there is a Google map 

where a user can select an area of interest and access data within the geographic extent of that 

area. This map is 2D and is not for visualizing and analyzing the underlying data. The 

visualization of the data happens after it has been downloaded from the website and loaded into 

the virtual globe application.  

GEON has funded other projects to further the work of visualization and analysis such as 

the GEON Integrated Data Viewer (IDV) and the Open Earth Framework (OEF). 

1.1.4.1 GEON IDV 

GEON has funded the development of an integrated data viewer through the UNAVCO 

using the Unidata IDV (Meertens, Wier et al. 2006). The GEON IDV is a plugin that takes the 

Unidata IDV a step further in terms of visualization to show subsurface data as well as surface 

and atmospheric data. The GEON IDV is designed for the exploration and analysis of any data 

from the Earth’s inner core through the atmosphere. This plugin can be downloaded online and 

added to the Unidata IDV using instructions provided on the UNAVCO website. 

While this software provides the ability to visualize and process subsurface data in a 

virtual globe, it requires data to be downloaded from a data repository elsewhere rather than 

providing the ability to access the data from the globe directly. 
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1.1.4.2 Open Earth Framework 

The Open Earth Framework (OEF) is another virtual globe designed to incorporate the 

viewing of surface and subsurface data with a temporal component so that it can show 2-, 3-, and 

4-dimensional earth science data (Baru, Keller et al. 2008). It is based on the World Wind virtual 

globe developed by NASA (Bell, Kuehnel et al. 2007). It is written in Java and built on an 

OpenGL visual platform similar to the Unidata IDV. The OEF contains software libraries for 

processing 2D and 3D data and provides access to common Earth science file formats. 

An available version of this software could not be found because many of the web links 

to information about the OEF have been broken or ill maintained. Efforts to contact the 

administrators of the project at the San Diego Super Computing Center were unsuccessful. 

1.2 Project Objective 

Given the variety of tools that accomplish one or two of the required subsurface data 

tasks (e.g. the tools listed in the previous section) there must certainly be a demand and need for 

a single application which can accomplish all three data tasks. As part of a recent NSF 

EarthCube GEO Domain program, CUAHSI and the USGS-Powell-Synthesis Center hosted a 

workshop in Boulder, Colorado from January 29, 2013 to January 30, 2013 to explore this need. 

Academics, scientists, and practitioners were invited to attend the workshop and discuss ideas 

and suggestions for developing a continental-scale repository of 3D subsurface data. The 

objective of the repository is to facilitate sharing of complex 3D surface and subsurface data and 

to enable the development of geoprocessing tools and workflows that operate on the hosted data. 

The objective of this research project is to accomplish a small part of the EarthCube 

program by doing two things. 
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1. Researching current virtual globe technology in terms of subsurface data visualization 

for the EarthCube project 

2. Developing an online prototype called the “Digital Crust” which allows subsurface 

data to be visualized and made discoverable.  

In addition to this objective some geoprocessing routines were built for the Digital Crust 

prototype to demonstrate an ability to accomplish all three data tasks in one place with a 

basemap. The actual building of the community data model portion is left to future research.  

This two-part thesis presents the findings from research of virtual globes available as 

online applications (Chapter 2) as well as the design and development of a prototype Digital 

Crust web based application which allows users to find surface and subsurface data online, 

visualize subsurface data in a virtual globe, and perform geoprocessing calculations on the data 

(Chapter 3). 
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2 VIRTUAL GLOBE ENVIRONMENTS 

For the first part of this research project, I investigated current virtual globes because 

different virtual globes offer different features for visualizing and processing data. The suitability 

of any virtual globe to be used in this project was determined based on its ability to fulfill the 

following three main criteria: 

1. The virtual globe must allow the visualization of subsurface geospatial data as it exists 

below the Earth’s surface. 

2. The virtual globe must be hosted in a publicly accessible website with no requirement for 

special licensing or payments. 

3. The virtual globe must be able to support file types with the Keyhole Markup Language 

such as KML and KMZ. 

 

The first criterion assures that the prototype will be able to maintain its focus on 

subsurface data visualization to keep in purpose with the overall EarthCube program. The second 

criterion is in place to allow subsurface data to be made discoverable on line in place with a 

basemap on the virtual globe. The third criterion was established to make sure that the globe 

would be able to use a standard data type for geospatial data.  KML and KMZ were chosen 

because it is widely used in the geospatial community and supported by the Open Geospatial 

Consortium (OGC) (Consortium 2010).  
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Three virtual globes were analyzed as candidates for use in the Digital Crust project: 

Google Earth, Cesium Globe, and World Wind. The advantages or disadvantages to using each 

of these virtual globes are discussed below as well as the reasons for deciding to use one over the 

others. 

2.1 Google Earth 

In addition to its widespread use and popularity, the Google Earth virtual globe has many 

advantages that made it a strong candidate for this project. It includes an API which is free for 

use and easily implemented into any website through JavaScript. This API is accompanied by 

large amounts of development support available through forums and also through the Google 

Code Playground (Google) which includes development support for many other APIs available 

from Google. 

A download of the Google Earth plugin or some other offline Google Earth application is 

required for any machine to view the API hosted in a website. Google Earth offers a free 

standard version of this application for PCs and Macs which makes it able to meet the second 

criterion mentioned above, i.e., the ability to access the website without special licensing or 

payments. Given the history of Google Earth with the initial development of the Keyhole 

Markup Language it was obvious that the third requirement for this project to be able to support 

KML and KMZ files would be met (Wilson 2008). 

The greatest challenge in finding a way to make use of the Google Earth virtual globe for 

this project was in meeting the first criterion, to allow the visualization of subsurface data 

through the use of a transparent ground surface. While Google Earth does allow 3D data to be 

created and displayed on the Google Earth globe, the visualization of any subsurface data is 

obscured by the ground surface. Attempts to change the transparency of the surface imagery 
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through the API were unsuccessful. Extensive searching was done for any information on any 

attempts to do this in the past whether they had succeeded or failed. It was discovered that older 

versions of the standard Google Earth application did support this ability in versions 5.0 through 

6.2 but this feature was deprecated in later versions. It was also found that Google Earth layers 

are structured with a main ground surface layer and other layers may be located below the 

ground surface elevation, but the opacity of this main layer cannot be changed.  

When it was determined that the standard API would not work, an API using a Google 

Earth Enterprise account was considered for use in this project. An Enterprise account with 

Google Earth allows the account holder more control over the imagery layers in Google Earth, 

specifically the ability to change the ordering and the opacity of the ground surface layer. It also 

allows users the ability to host their own maps for public viewing using the Google Earth 

Enterprise API. However, a license to an Enterprise account could not be obtained in time to 

complete this phase of the project. 

2.2 Cesium Globe 

Cesium Globe is a dynamic and attractive virtual globe that is easily implemented into 

customized websites. Cesium Globe is built on the WebGL platform and the source code needed 

to implement it into a website is given in JavaScript. It is an open source project which is 

compatible with PCs and Macs and does not require any plug-in downloads to view which means 

that it meets the project requirement for being freely accessible to the public without special 

licensing or payments.  

Cesium has helpful and responsive support for developers through their sandcastle 

website (Cesium) which is similar to the Google Code Playground and also through forums 

where posted questions are responded to by the Cesium staff, typically within hours. 
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Cesium Globe allows developers to change the main surface imagery so that the globe 

can utilize base imagery from Bing, Open Street-Map, Esri, and others. The surface imagery can 

also be turned off, resulting in a transparent globe where 3D subsurface data can be viewed. This 

ability is easily implemented in Cesium Globe and fulfills the first criterion for this project.  

The Cesium Globe does not support KML or KMZ files in the globe directly but boasts 

more advanced capabilities to show time dependent data compared to other virtual globes 

because of its use of the Cesium Language (CZML) file format. CZML files are geo-spatial data 

files like KML files. They have an extension of “.czml” and are completely indigenous to the 

Cesium Globe and are not used by any other virtual globes or anywhere else in the GIS industry 

and are not formalized by the OGC. CZML files are based on JavaScript object notation (JSON) 

(Crockford 2006) file structure which is a common data sharing file structure for many coding 

languages including but not limited to: C, C++, C#, Java, JavaScript, and Python. CZML files 

are structured to be more efficient for incremental streaming so that time-dependent geospatial 

data can be viewed in series (Cesium). 

The Cesium website provides code examples and instructions for writing CZML files 

which can be shown in the Cesium globe in 2D or 3D, extending above or below the surface 

imagery. A conversion tool to convert from KML files to CZML files is also available. However, 

this converter does not support all of the features of KML that are required for this project, such 

as extrusions and some multi-geometry. Attempts to show 3D subsurface data in the Cesium 

Globe, which was written originally in KML and then converted to CZML using this conversion 

tool, were unsuccessful. 

10 
 



www.manaraa.com

2.3 World Wind 

World Wind is an open-source, cross-platform-compatible virtual globe developed by 

NASA Ames Research Center (Boschetti, Roy et al. 2008). Older versions of the World Wind 

virtual globe have been developed in the .NET framework as a desktop application. The current 

version is written in Java and the source code may be downloaded from the World Wind website 

(Wind) and then used to develop a virtual globe as a Java application or Java applet. 

The World Wind virtual globe was developed for the geoscience and earth-science 

communities to use as a data processing tool (Butler 2006). It has been used by other 

organizations including the OEF mentioned in the previous section.  

Because World Wind is open source, custom developed versions of the virtual globe 

allow it to be hosted in publicly accessible websites. This fulfills the second project criterion for 

free access to the virtual globe through a website. 

The preferred method of hosting either the Java application or the Java applet for World 

Wind is done through the use of Java Web Start (Zukowski 2002). Java Web Start software 

allows web users to run applications from a web server. A World Wind application run through 

Java Web Start does not show up in the browser window. It shows up in another window similar 

to the Google Earth application that is installed locally. 

Java Web Start software is also used to run Java applets that differ from Java applications 

because they have no independent viewing window and so are displayed within the user’s web 

browser. A World Wind applet run through Java Web Start would show up in the web site 

similar to the Google Earth API. 

The World Wind globe also has the ability to change or remove surface imagery layers so 

that subsurface data loaded into the globe can be viewed, which satisfies the first criterion. The 

11 
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World Wind globe also supports the visualization of both KML and KMZ files which fulfills the 

third project criterion. 

2.4 Selection of Globe for Prototype 

Table 1 below summarizes how well each of the three globes reviewed satisfy the project 

criteria. The Google Earth API globe could not meet all of the criteria for this project because of 

its inability to allow the opacity of the surface imagery to be manipulated.  The Cesium Globe 

did not fulfil all of the requirements of this project because of its lack of support for KML files. 

The current conversion tools from KML files to CZML files work for most 2D data but not 3D 

data. If Cesium continues to develop more comprehensive tools for converting from KML and 

other OGC standard geo-spatial data types to CZML then the Cesium Globe may become a more 

viable option. This would also be true if Cesium would develop a Cesium globe that would 

support KML data natively. The decision was made to move forward in development using the 

World Wind virtual globe because it was the only one to meet all of the minimum requirements 

of the project scope with the ability to accomplish a significant amount of development within 

the timeframe given for this project.  

 

Table 1:  Summary of how virtual globe criteria were met with the X mark indicating a criteria which was 
not met and the check mark indicating a criteria which was met 

Virtual Globe Shows Subsurface Data Can be Hosted Online Supports KML/KMZ 

Google Earth 
   

Cesium Globe 
   

World Wind 
   

12 
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3 DEVELOPING A DIGTAL CRUST PROTOTYPE 

The second part of this research project is to develop a working prototype to demonstrate 

how the EarthCube program could use the selected virtual globe, World Wind, to accomplish the 

first two data tasks for subsurface data specifically. Doing this requires creating a prototype 

website where the World Wind globe can be accessed and used to discover and show subsurface 

data hosted on a server. Because this Digital Crust project is not intended to create an entire data 

network only a few data files are used from the server to demonstrate a use case for this.  

The development of two geoprocessing routines is also discussed in this chapter. One is 

to convert shapefiles from a user machine to KML files on the server and the other is to 

interpolate soil cross-sections based on borehole log data. Both of these return a KML file of the 

results to the user for viewing in the World Wind globe. These two geoprocessing routines were 

developed in addition to the scope of the Digital Crust project to demonstrate the third data task. 

3.1 Developing a World Wind Virtual Globe 

The World Wind virtual globe is an open-source visualization platform developed for the 

geoscience and earth-science communities for use as a customized data processing tool (Butler 

2006). The source code is written in Java and may be downloaded from the World Wind website 

(Wind). This website also has tutorials and code snippets available to help beginning World 

Wind developers understand the many features available within the source code and how to 
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access different types of World Wind functionality. However, even with these examples, the help 

available to go from downloading the source code to launching a World Wind globe is not 

complete enough on the World Wind site to make it possible to do without help from other 

sources. It is useful then to describe how the process was accomplished in this project as a 

reference to anyone attempting to build a World Wind globe. The development of the World 

Wind globe as an application or an applet is also discussed as well as a brief explanation of how 

to launch them through Java Web Start (Zukowski 2002). The main components necessary to 

begin development of any World Wind virtual globe are listed as follows: 

1. The necessary source code. 

a. The World Wind source code 

b. An up-to-date version of the Java Development Kit (JDK) to support the 

Java code 

2. An integrated development environment (IDE) with which to write, organize, and 

compile the code 

When preparing these two components for development in this project, information from 

several sources was used to prepare the source code and choose an appropriate IDE. Again, no 

existing sources could be found which describe all the necessary information and procedures to 

do this so it is useful to discuss how it was done for this project specifically. 

3.1.1 Obtaining the Source Code 

The World Wind source code can be downloaded from the World Wind web site (Wind 

Aug. 2013) at http://worldwind.arc.nasa.gov/java/. On this page there are two downloads 

available, “World Wind Java SDK 1.5” and “World Wind Java SDK 2.0 Daily Builds.” The 

SDK 1.5 download was used for the development of this project. 
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The Java Development Kit (JDK) is the library of the core functionality of Java 

programming. An up to date version of the JDK required to support the development of Java 

code can be downloaded from: http://www.oracle.com/technetwork/java/index.html on the 

official Java website. Before beginning development with the World Wind source code or any 

Java code this JDK must be downloaded and installed. After installing the JDK certain 

environment variables on the machine used to develop the code may need to be set up before 

development begins. The process for setting up these environment variables may differ based on 

the JDK version installed and the operating system of the machine being used. This project used 

a Windows 7 operating system and the JDK labeled on the website as “jdk1.7.0_21” because it 

was the most up to date JDK available at the time. After the JDK is installed and the 

environment variables are set up a Java IDE can be installed to begin the development process. 

3.1.2 Selecting an IDE 

When selecting an IDE to use for developing with the World Wind Java source code it is 

important to use a 32-bit compatible IDE because errors will be encountered when attempting to 

compile the World Wind Java source code in a 64-bit IDE. 

For this project, development was done using the 32-bit Eclipse Juno IDE because it is 

available for free and it is widely used which made finding solutions to coding problems much 

easier. It also has the distinct advantage of having other plugins like Aptana Studio, which is 

used for web development, and PyDev, which is used for Python scripting. These features 

became very useful for this project because it includes code development in Java, Python, and 

web design. 
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After an appropriate Java IDE has been selected and installed, the libraries from the 

source code, which will be used in the development of the World Wind globe, need to be set up 

for referencing.  

3.1.3 Java Code Organization 

Before development of a World Wind globe begins, a Java project needs to be created in 

an IDE with a coding library which includes DLL files from the source code downloaded from 

the World Wind website. Instructions to organize these files are not provided on the World Wind 

website because the process for doing this changes slightly depending on the IDE being used and 

the type of project being developed. It is useful then to provide the specific steps taken to set up 

the Java project and its source code libraries for this research to assist others who may seek help 

developing a World Wind virtual globe. These steps are described in APPENDIX A with some 

brief explanation given below.  

Java code is organized into a hierarchy of projects, packages, and classes. A project 

contains several folders to organize all of the content. Typically there are two folders within a 

project which are named “src” and “lib” to hold the code developed for the project and coding 

libraries respectively.  

The “src” folder contains packages. The “lib” folder contains other content referred to by 

classes such as dynamic-link libraries (DLL files), text files, images, etc. More information about 

Java code organization can be found at the official Java website. 

 

3.1.4 Application or Applet 

The World Wind virtual globe was developed as both an application and an applet for the 

Digital Crust to show the differences in use and capabilities of each. Both may be run from the 
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server through Java Web Start. Because they are different from both the user and a development 

perspective it is useful to point out some of the main differences now before describing how they 

were developed. From a user perspective the main difference is that an applet run through Java 

Web Start appears within the web browser and inherits its viewing frame dimensions from the 

HTML div tag it is assigned to. It does not require any downloads or installations.  

An application run through Java Web Start requires the download of a JNLP file. When 

this file is run the application appears in its own viewing frame outside of the web browser. This 

JNLP file will run the application whether the website it originated from is opened a web 

browser or not as long as there is an Internet connection. Applications also tend to handle more 

memory better than applets so a World Wind globe with extensive features and capabilities 

would be better suited as an application than an applet. 

From a development perspective, both must contain classes that act as the viewing frame 

object in which the globe and the other controls will be shown. The viewing frame class of an 

applet must be extended from the JApplet class to appear in a web browser and the viewing 

frame of an application must be extended from the JPanel class to appear in its own viewing 

frame. Both the JApplet class and the JPanel class are part of the JDK. A World Wind 

Application is easier to start with because there are several examples of applications with 

different capabilities already created that come with the download of the World Wind source 

code. The differences between a World Wind applet and application are discussed further in 

Section 3.3. 

3.1.4.1 Creating a Basic Application 

Once the libraries for the source code are established, creating applications with the demo 

examples provided with the source code becomes very easy. The application built for this 
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research project was built with the intent of allowing the user to generate a subsurface soil cross 

section within the virtual globe by doing the following steps. 

1. Identify an area where borehole log data already exists in a database. 

2. Draw a polyline within the extent of that area. 

3. Return and load a KML of the soil profile below the polyline drawn as 

interpolated from the existing borehole log data. 

This project took specific advantage of the “KMLViewer.java” demo in the 

“examples/kml” folder, the “Line Builder.java” demo found in the “examples” folder and the 

“WMSLayerManager.java” demo found in the “examples/kml” folder of the World Wind source 

code downloaded as mentioned in APPENDIX A. 

The code from these three demos were added as new Java files to the project package and 

became the KMLViewer class, Line Builder class, and WMSLayerManager class respectively. 

The KMLViewer class has controls in a menu bar that allows the user to add KML files as 

overlays to the World Wind globe. The Line Builder class has a control panel with buttons that 

allows the user to draw a polyline on the World Wind globe surface within the application. The 

WMSLayerManager class allows the user to show different overlays of tile imagery for the 

World Wind globe from different databases.  

The functionality of these classes was combined by creating all the classes within the 

same package and extending the WMSLayerManager.AppFrame class from the 

LineBuilder.AppFrame class then extending the LineBuilder.AppFrame class from 

KMLViewer.AppFrame class. Because the AppFrame class of each of these parent classes was 

the viewing frame object of each, extending one from the other combined all the parts of each 

class’ viewing frame into one. By extending classes for the viewing frames in this manner the 
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application contained all of the features of the KMLViewer demo, the LineBuilder demo, and the 

WMSLayerManager demo.  

Other custom classes were also written to perform some intermediate functionality which 

was used in passing the coordinates from the polyline drawn to Python Scripts on the server to 

interpolate the soil cross sections and return them to the World Wind globe application. The code 

written for this application is provided in Appendix B.1. 

3.1.4.2 Creating a Basic Applet 

The applet created for this research project was built to demonstrate how a World Wind 

globe applet could be used in a webpage to show KML files of 3D subsurface data. It allows the 

user to load KML files directly from the user machine or from a web source. 

The World Wind Java source code includes two applet demos within the 

“examples/applets/” folder mentioned in APPENDIX A. The code in the “WWJApplet.java” file 

was used to create the applet with adjustments were made to add the layers menu and the menu 

bar for adding KML and KMZ files.  

The code example from the KMLViewer class mentioned in Section 3.1.4.1 above was 

used to help develop this additional functionality. Extensions for the viewing frame classes could 

not be used in this case because the structure of an application window and an applet window are 

different in the Java JDK, as mentioned in Section 3.1.4. In order to apply the functionality of the 

KMLViewer class to an applet the code and all of its methods and the origins of those methods 

had to be understood and written into the applet. The code for the applet developed in this project 

is included in Appendix B.2. 
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3.1.5 Launching Through Java Web Start 

The application and applet developed for this project are launched through the website 

using Java Web Start. Other methods may be used to run Java applications or applets but this is 

the currently preferred and most broadly accepted method today because it is the most supported 

by browsers. Information about Java Web Start software is available at the official Java website 

(Java 2014) but it is discussed here briefly to assist in the explanation of other material in this 

thesis.  

Java Web Start software does not require any installation because it is implemented 

through JavaScript and HTML code in a website. Java Web Start implementations allow web 

users to run applications from a web server through the use of compiled Java executable files 

called JAR files with the “.jar” extension. The JAR files exist on the host server and are 

referenced through another file called a JNLP file with the “.jnlp” extension which is 

downloaded by the user. JNLP files are typically very small in size and are downloaded quickly. 

A JNLP file establishes the link between the user computer, or browser, and the server. 

To run an application or an applet through Java Web Start three files are required: a 

compiled executable JAR file of the applet or application, a keystore file, and a JNLP file 

referencing the JAR file. The process to create a JAR file will depend on the IDE being used for 

development. JNLP files are readable code which may be written in a plain text editor. All of 

these files should exist somewhere within the root folder where the web files are hosted by the 

website.  

3.1.5.1 Creating a Keystore 

To run any JAR file through Java Web Start it needs to be signed and a keystore needs to 

be generated to sign the JAR file. This can be done in the command line by directing the 
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command line to the file location of the JAR file with the cd command and creating a keystore 

with the keytool command. Once a keystore has been generated it can be used to sign a JAR file 

using the jarsigner command. Examples of how to create a keystore and use it to sign a JAR file 

are provided in APPENDIX C. 

Signing JAR files can be done with a self-signature or a certified signature. Since the new 

version of Java was released in January, 2014 a self-signed JAR file is not considered secure and 

will be blocked by the user’s local machine unless special permission is given to allow it (2014). 

The JAR files for the application and applet used in this research project are self-signed so 

instructions for allowing these to run are provided in the home page of the site where the applet 

and application are being hosted at (Smith and Whitman 2013). 

3.1.5.2 Creating JNLP Files 

Once the JAR file has been created a JNLP file must be created to reference it. JNLP files 

are necessary for launching applications and applets through Java Web Start and the structure for 

a JNLP file differs slightly for applications and applets. The JNLP files created for this project 

were based on examples provided in the World Wind source code.  

The example used to run the application is found within the main folder of the World 

Wind source code under the “demosite” folder. The example used to run the applet in the website 

using JavaScript is also found within the main folder of the World Wind source code under the 

following path: …src/gov/nasa/worldwindx/examples/applet/. 

The JNLP files are referenced within the website through HTML and JavaScript code. 

This code also differs between the application and the applet because applets are launched as part 

of the website and must be provided with a div tag and specifically dimensioned while the 
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application has its own window and is run through a button or link which references the 

application’s JNLP file. 

Examples for the JNLP files used specifically for this project as well as the HTML and 

JavaScript code to run them are provided in APPENDIX C. 

 

3.2 Geoprocessing Using ArcGIS and AHGW 

The World Wind application and applet serve as visualization platforms for geospatial 

data but are not intended to perform heavy-duty data processing. The data processing aspect of 

this project demonstrates the prototype’s ability to communicate with data on the server and 

return subsurface data to the virtual globe for visualization. The ability to do this kind of 

geoprocessing online also makes the website more attractive for use to the geoscience 

community which may encourage more data sharing. 

To accomplish the data-processing routines for this research project another software 

system was installed onto the server which hosts the website and World Wind globes. Two 

processing routines were built, one for the application and another for the applet. The routine for 

the application takes longitude and latitude coordinates forming a polyline to return a KML file 

of subsurface soil cross-sections below the polyline. The routine for the applet takes a set of files 

that form one shapefile and returns a KML file version of the shapefile loaded into the applet 

globe. 

Esri’s ArcGIS software was chosen as the software system to for use in these 

geoprocessing routines because it has the advantage of using its tools through Python scripting 

through the arcpy library. The arcpy library is a Python-based library of all the tools available in 

the ArcGIS software package. Using ArcGIS also allows the use of Arc Hydro Groundwater 
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(AHGW) software. AHGW is a suite of geoprocessing tools distributed by Aquaveo that works 

as a plugin to Esri’s Arc Desktop software including Arc Map and Arc Scene. It is specifically 

designed for subsurface data processing and visualization and includes tools for generating soil 

cross-sections from borehole log data, which is ideal for this research project. Its tools are also 

available for use through Python scripting through the arcpy library with some initial setup. 

The early development of this project was begun using ArcGIS 10.0 but it was found that 

the 10.0 version lacked some desired features offered by ArcGIS 10.1. Serious development of 

geoprocessing tools was done using ArcGIS 10.1 but complications arose in the web service 

development that led to attempts to use ArcGIS 10.2, the newest version of the ArcGIS suite. 

The complications with using different versions of ArcGIS for running these processing routines 

are described here because the differences which caused these complications are not advertised 

by Esri. 

3.2.1 Setting Up the ArcGIS Environment to Use AHGW Tools in Python Scripts 

Python scripts using the arcpy library require the AHGW tools to be imported 

specifically and importing all of the AHGW tools would take an unnecessarily long amount of 

time compared to importing only a few. A new toolbox was created for this project that 

contained only the AHGW tools necessary for the geoprocessing routine to be accomplished. 

This was to facilitate the importation of only the AHGW tools that will be used. The method for 

importing this new toolbox is illustrated in the Python code of Appendix E.2.b.  

The purpose of using AHGW, as previously described in Section 3.1.4.1, was to return a 

KML of subsurface cross-sections below a specified polyline where the polyline was within the 

geographical extent of some borehole log data existing on the server. The data used for this 

project were taken from the Aquaveo tutorials (Aquaveo 2014) using the “Horizons” tutorial. 
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This tutorial has datasets already set up for creating geosections using soil profile raster data in 

the Roseville, CA area.  

3.2.2 Initial Problems with Arc 10.0 

Arc Desktop has a tool called “LayerToKML” which can be used to convert Esri-

supported files such as feature classes, shapefiles, and layer files to KMZ files. In Arc Desktop 

versions 9.3 and 10.1 there is an option with this tool to specify whether or not the converted file 

should be “clamped to ground” meaning the file data will only show on the ground surface and 

not extend above or below it. This selection should be checked for files such as simple polygons, 

points, polylines, and surface imagery which are intended to only represent surface data. 

However, this option should be disabled when converting 3D data existing above and/or below 

the surface. 

Version 10.0 does not have this option and makes all conversions “clamped to ground” 

by default. There are no options in the desktop tool or the Python code to change that setting. 

This excludes the 3D aspects of any data used by this tool. Because the application and applet 

developed for this project support KML files and this project is focused on displaying 3D 

subsurface data, version 10.1 of the ArcGIS suite was investigated as a solution. 

3.2.3 Developments in Arc 10.1 

The 10.1 version of ArcGIS introduced some problems for the geoprocessing and also for 

web services because of Esri’s transition of Arc Server from 32-bit compiling to 64-bit 

compiling.  

In version 10.0 the installation of Arc Desktop and Arc Server included a 32-bit version 

of Python 2.6 and both made use of the same Python executable file. This made using the 

desktop plugin AHGW tools through Arc Server very easy. In the 10.1 version the Arc Desktop 
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installation comes with a 32-bit Python 2.7 executable file and the Arc Server version comes 

with a 64-bit Arc Python 2.7 executable file. This presented several problems, most of which 

were overcome, but one that was not. 

The web service requests for the Python scripts would not work when using the 32-bit 

Python executable installed by Arc Desktop 10.1. The Python code would work only until 

reaching the “import arcpy” statement and then break. The exact reason for the code not being 

able to use the arcpy tools from the 32-bit installation of Python 2.7 from Arc Desktop 10.1 is 

still unknown. The web service did work for Python scripts using the 64-bit Python executable 

file installed by Arc Server 10.1 but had problems being accessed through web service requests. 

Although web services could be run using the Arc Server 10.1 installation of the 64 bit 

Python 2.7 executable the geoprocessing capabilities were limited. ArcGIS supports several 

database types but the 64-bit version of ArcGIS does not support personal databases with the 

‘.mdb’ extension. The geoprocessing workflows developed for this project used the personal 

databases originally and had to be adjusted to use file geodatabases with the ‘.gdb’ extension in 

order to accommodate the 64-bit compilation of ArcGIS. Another limitation to the 64-bit version 

of ArcGIS is the support of the AHGW plugin. Because the AHGW plugin is compiled in 32 bit 

the web services using the 64-bit Python executable and the 64-bit ArcGIS could not recognize 

the AHGW tools.  

The inability to use AHGW through web services using ArcGIS 10.1 made it necessary 

to investigate the new 10.2 version of ArcGIS in favor of version 10.1. 

3.2.4 Using Arc 10.2 

Like the 10.1 version, the 10.2 version of Arc Desktop and Server were compiled 

differently as 32 bit and 64 bit programs that also came with different Python 2.7 executable files 

25 
 



www.manaraa.com

in 32-bit and 64-bit respectively. The Python scripts were able to run through web services which 

called the 32-bit Python 2.7 executable installed with Arc Desktop 10.2 and successfully 

imported the arcpy library. However this did not completely solve the issue of accessing the 

AHGW tools. 

Different tools in the AHGW plug in require different levels of licensing. The two tools 

used in the Python script for generating soil cross sections are AssignHydroIDGW and 

RastersToGeosections. The license to use the AssignHydroIDGW tool is free with any valid 

ArcGIS user license because it is part of the Groundwater Analyst toolbox (Aquaveo 2014). The 

RastersToGeosections tool is part of the Subsurface Analyst toolbox so it requires a higher level 

license. For this research project the full license was obtained which included a license to use the 

Subsurface Analyst tools and the Python script worked as expected with no errors when it was 

test run from directly within the host server. However, when the Python script was run from a 

web request it would fail at the RastersToGeosections tool with the error message shown in 

Figure 1. 

 

 

“This tool requires a Subsurface Analyst license. To 
activate the license select the Help > Register 
command in the Groundwater Analyst, MODFLOW 
Analyst, or Subsurface Analyst Toolbars. 
Could not Create GeoSection features. 
Failed to execute (RastersToGeoSections).” 

Figure 1:  Error message given when trying to run RastersToGeosections tool from a web request 
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This message reveals that the higher Subsurface Analyst license registered to the host 

server is not honored when the AHGW tools are initiated by a request from a web service. The 

managing company of the AHGW plugin, Aquaveo, was contacted about this issue but a solution 

has not yet been found. 

3.2.5 ArcGIS/AHGW Summary of Conflicts 

The AHGW tools could not be utilized for this project with the resources available 

because the necessary criteria to access these tools and convert outputs to KMZ could not be met 

by any available version of ArcGIS. These necessary criteria are as listed below. 

1. Licensed version of ArcGIS installed onto server 

2. LayerToKML arcpy tool which supports 3D KMZ 

3. 32 bit Python library 

4. AHGW licensing working with web requests 

Table 2 below summarizes the conflicts found with creating a web service through PHP 

for the AHGW tools with different versions of the ArcGIS suite. The red ‘X’ marks indicate 

where there was a conflict, the blue check mark indicates where there was no conflict, and the 

yellow question mark indicates where progress had not gone far enough to find out if there 

would have been a conflict or not.  

This left the geoprocessing side of the project at a standstill because the AHGW tools 

could not be used by any version of ArcGIS by a web service to create soil cross sections. 

To show the potential ability for using ArcGIS in a web service, a processing tool to 

convert shapefile data to KML and load the KML into the globe was developed using version 

10.2 of ArcGIS. This did not require any of the AHGW tools but still accomplished the task of 

demonstrating some kind of processing using ArcGIS through Python scripts 
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Table 2:  Summary of problems with using different versions of ArcGIS with a PHP Web Service for AHGW 

Version of 
Arc GIS 

3D KMZ 
Conversion 

Access to 32bit 
arcpy through 
PHP 

AHGW 
License with 
Web Request 

10.0 
  

 

10.1 
  

 

10.2 
   

 

3.3 Website Development 

The website developed for the Digital Crust can be accessed from is hosted through a 

virtual machine at BYU campus using the Windows Server 2008R2 operating system and an IIS 

7 server. The home page for this website is: http://digcrust.byu.edu/ (Smith and Whitman 2013). 

Scripts were developed to allow communication between both World Wind globes and 

the server and accomplish the respective tasks which the application and applet were designed to 

perform, namely generating geosections and displaying subsurface KML data. A mixture of 

programming languages was used to accomplish the communications between the globes, server, 

processing software, and website. 

PHP is a programming language used for server-side web scripting (Lerdorf, Tatroe et al. 

2006). It is able to pass information between the server and the web user and was used in the 

development of this website as the primary means of passing information between the World 

Wind globes and ArcGIS software on the server. 

Command line codes were executed on the server using PHP to run Python scripts 

responsible for data processing using ArcGIS and AHGW. The PHP scripts also capture all 
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printed outputs from the command line and Python scripts. These output messages can be 

checked in PHP to direct the web services to other functions if necessary. 

JavaScript and HTML were used for the main website development including the layout 

of the website, navigation controls, and implementing the World Wind application and applet 

through Java WebStart. Both an application and an applet are available through the website to 

demonstrate the advantages and disadvantages and abilities of each. These advantages and 

disadvantages as well as the processing routines for the application and applet are described in 

the following below. 

3.3.1 World Wind Applications 

Using the World Wind virtual globe through an application as opposed to an applet offers 

some advantages. Applications are run by the client machine through an Internet link to the JAR 

file from the web host server. This allows the application to communicate closely with the client 

machine to browse through, open, and read client side files. Applications also run outside of web 

browsers so they do not need to be cross browser compatible and they run faster than applets and 

can handle more memory. Another advantage of using applications is that the host server can 

handle several applications with different specific abilities. This way, users can run the 

application that pertains to their needs and save necessary information to the server so that it can 

be loaded into the application or the server later. 

For the World Wind application specifically, there is a distinct advantage for developers 

because many demo applications are downloaded with the source code. These demo applications 

provide examples of how to use the World Wind Java source code and can be easily customized 

to suit more specific needs. 
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The application developed for this project has three distinct abilities which enable it to 

accomplish its goal to allow the user to generate a subsurface soil cross section within the virtual 

globe as mentioned earlier in Section 3.1.4.1.  

1. It can load raster data from a preloaded WMS server provided with the World Wind 

source code and from another WMS server specified by the user.  

2. It can draw polylines on the globe surface and send a geoprocessing request to the server 

through PHP.  

3. It can load KML or KMZ files from a client side file or from a URL.  

The first ability, loading data from a WMS server, demonstrates the application’s ability 

to provide large amounts of global scale data to users where there is data available online. The 

application also starts up with the data from NASA’s WMS server already loaded. If a WMS 

server existed which hosted locations of available borehole log data then that server could also 

be loaded using this capability. In the absence of such a server, the application contains an option 

in the main menu labeled “Add Data Boundaries” seen in Figure 2 to load a small polygon into 

the globe as shown in Figure 3. This polygon represents the extent of borehole log data existing 

in Roseville, CA from the AHGW Horizons tutorial mentioned in Section 3.2.1. 

 

Figure 2:  Application menu option which will load a file showing the extent of borehole log data on the server 
which may be used to generate soil cross sections 
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Figure 3:  A polygon loaded from selecting the menu option in Fig2. This polygon represents the extent of 
available borehole log data on the server 

 

The second ability, to draw polylines in the globe, allows the user to specify the location 

of the cross sections to be created through the buttons shown in Figure 4 and in the upper right 

hand corner of Figure 3.  
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Figure 4:  Buttons used for polyline drawing controls in application 

 

 

The “New” button turns on the polyline drawing mode. The polyline is drawn by clicking 

and dragging to different points on the globe. As the polyline is drawn the coordinates of the line 

appear below the buttons on the left. The “End” button exits the polyline drawing mode. If the 

“New” button is clicked again after clicking the “End” button, the previous line and the 

coordinates will be erased.  The “Pause” button pauses the drawing mode to allow the user to pan 

on the globe and changes it’s text to “Resume.” If the “Resume” button is pressed the drawing 

mode resumes and pan mode is disabled. The “Get Sections” button sends the coordinates of the 

polyline to the server to generate soil cross sections below the polyline based on the existing 

borehole log data. This will also open a web page where the cross section can be downloaded in 

KML format after the processing is complete. 

The third ability, loading KML or KMZ files into the globe, allows the user to load the 

cross section data generated into the globe with the “Open File…” option shown in Figure 2 

above. 
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3.3.1.1 Creating a Geosection  

When the user clicks the “Get Section” button in the application a geoprocessing request 

is initiated which creates a KML file of a soil cross section below the polyline drawn. The 

process is described here and illustrated in Figure 5 below. 

The “Get Section” button initiates the geoprocessing request by opening a browser 

window to a PHP page. The URL of the PHP page includes the latitudinal and longitudinal 

coordinates of the polyline drawn on the globe. 

The PHP page accesses the coordinate values passed through the URL and redirects to 

another PHP page, while sending the coordinate values to the second PHP page through the URL 

again. The second PHP page also accesses the coordinates from the URL and uses them to create 

a single string variable that represents a command line argument for running a Python script. The 

purpose of using two PHP pages in this way is to allow the user to see a waiting screen on the 

first PHP page while the Python script is running.  

While the second PHP page is loading the server command line is running a Python script 

which creates the cross section based on the coordinates of the polyline drawn. The Python script 

first uses the coordinates to create a comma-separated values (CSV) file. The CSV file is used to 

recreate a polyline as an ArcGIS feature class section line. The section line is then used with the 

AHGW tools to create a geosection showing the interpolated soil profiles below the section line 

from the raster data. A KML of the geosection is then created on the server at a location where it 

can be downloaded by a web browser. Once the Python script has finished running, the second  
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PHP page finishes loading and displays information about the success or failure of the process 

with a link to download the new KML if it is successful. 

This process could not be completed to allow a full demonstration because of the 

problems encountered with using the AHGW. Despite these problems a theoretically workable 

Python script was written for use with ArcGIS 10.2 that could be easily implemented when a 

compatible version of AHGW becomes available. The codes used to write all of the PHP and 

Python scripts used in this process are provided in Appendix E.2.  

3.3.2 World Wind Applet 

In addition to developing a World Wind application, a World Wind applet was also 

developed. The applet is limited in its performance because it runs within a web browser and 

some web browsers, such as Google Chrome for Macs, may not support Java or support Java 

Web Start fully (Java 2014). Applets are also limited in communication with client machines. 

Security issues prevent applets in general from browsing client side files. There is also very little 

documentation provided with the World Wind Java source code to help with developing an 

applet. 

Despite these limitations the applet also offers the distinct advantage of being displayed 

directly with in the website. Because the applet is displayed in the website, the JavaScript of the 

web page where the applet is hosted inherits some of the Java methods that are included in the 

applet JAR file. This means that the inability for the applet to communicate with client side files 

may be overcome by using JavaScript/HTML controls to do it for you and then communicating 

with the applet via JavaScript. This gives developers the opportunity to maximize viewing space 

for the virtual globe by leaving the applet as only a viewing window that is not cluttered by menu 

bars, buttons, menu trees and other control items. Rather, all of these controls can be created as 
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HTML form controls that can be part of a collapsible menu form in the webpage allowing the 

control options to be expanded, contracted, and used without compromising the viewing space of 

the virtual globe window as in Figure 6. 

 

 

Figure 6:  Example of collapsed controls menu. Top - Menu is fully compressed. Bottom - Menu is partially 
expanded 
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The applet developed in this project has several tile layers available in which are shown 

in the right checkbox menu contained within the applet window. The surface imagery may be 

turned off by unchecking the top three layers “NASA Blue Marble Image”, “Blue Marble 

(WMS) 2004”, “i-cubed Landsat”. The “Map Controls” section to the right of the applet window 

can be expanded to show several controls to change the viewing altitude and direction of the 

virtual globe as well as the ability to fly to locations of specific interest. The first two locations 

of specific interest are Roseville, CA and Chesapeake Bay, VA as shown in the fully expanded 

“Map Controls” section in Figure 7. These two locations contain preloaded soil cross sections 

which may be viewed by unchecking the surface layer imagery options as mentioned above then 

clicking the “Fly to location” button when the item is selected. 

 

 

 

Figure 7:  Image of the expanded map controls for the applet 
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KML and KMZ files can be uploaded to the globe through the “Add” option in the menu 

bar at the top of the applet window. These files may be from a web source or local to the user 

computer. Local files are entered by selecting the options Add>>KMZ or KML and then entering 

the full file location. Choosing the same options but entering a URL to an online file instead of a 

local file location will add a file from a web source. This Add option only accepts files formatted 

as KML or KMZ files. 

To allow users to view data which is not already in KML or KMZ format and to 

demonstrate the capabilities for the applet, website, and server to pass and send information a 

geoprocessing routine was developed for this project which accepts shapefile data, converts it to 

KML and loads it into the applet’s virtual globe. 

Shapefile data can be uploaded using the “Upload Data” section of the menu bar to the 

right of the applet window shown in Figure 8. The controls in this menu are HTML form 

controls that call JavaScript functions. These controls allow the client to upload data and send a 

request to the server to initiate a processing routine. 

 

 

 

Figure 8:  Image of the HTML controls to upload shapefiles into the applet globe 
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This processing routine converts uploaded shapefiles to KML and loads the KML into the 

applet globe. The specifics of this process are described in the section below and are also 

illustrated in Figure 9. 

3.3.2.1 Converting Shapefiles to KML from the Website 

The first step in this process is to receive inputs. An HTML form was created on the web 

site where the World Wind applet is hosted which allows users to upload multiple files (Figure 

8). The “Choose Files” button in this form opens a file browser showing client-side files. The 

user can navigate to a file and select all the files associated with one shapefile dataset. Although 

the browser will allow the user to select any file type, only files with the extensions associated 

with shapefile data are actually uploaded to the server. The permitted extensions are – .shp; .shx; 

.dbf; .prj; .sbn; .sbx; .fbn; .fbx; .ain; .ixs; .mxs; .atx; .shp.xml; .cpg.  

A checkbox is also available as part of this form to allow the user to specify whether or 

not the resultant KML should be clamped to the ground. If this checkbox is checked the resulting 

KML file will not appear in three dimensions. After completing these two form items the 

“Submit” button may be clicked which initiates two processes. One of these processes runs the 

geoprocessing request and the other process checks for a result from the geoprocessing request 

every two seconds.  

The geoprocessing request is begun when the “Submit” button is clicked and opens a new 

tab to a PHP page. This PHP page specifies the criteria for acceptable file extensions and uploads 

the allowable files to the server. The page then shows a waiting screen with an animated GIF 

image and a message about the uploaded content and the success or failure of each file upload. 

This page also creates a single string variable representing arguments to pass to the Python code 

and navigates to the next PHP page with the variable being passed through the URL.  
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The next PHP page accepts the variable in the URL through the “$_GET[]” array and 

appends the string to another string which represents a command line prompt. This new string is 

used in the “exec()” command which sends a request to the server command line to run a Python 

script with three arguments. The arguments are the file path on the server where the shapefile 

data has been saved, the name of the shapefile data, and an integer of value 0 or 1 to indicate 

whether the checkbox on the form is checked.  

Once the second PHP page is initiated, and while it is still loading, the server command 

line is running a Python script which accepts the three arguments passed to it. This Python script 

uses the “LayerToKML” tool in the arcpy library to save the shapefile data as a file with the 

‘.lyr’ extension (layer file) and converts the new layer file to a KMZ. The KMZ is then unzipped 

to a KML in a location on the server where it can be downloaded from a web browser. When the 

Python code is finished running, the second PHP page then finishes loading and shows 

information about the failure or success of the geoprocessing result including a link to download 

the KML file generated. 

A text file is also created by the Python script which contains information about the 

newly created KML file including the URL to download it at and a time stamp to mark when the 

file was created. This text file is important for the other process initiated by the HTML “Submit” 

button. 

The other process initiated by the HTML “Submit” button intermittently checks for the 

creation of the new text file with the information about the KML. This process begins with a 

JavaScript function inside of the HTML page where the World Wind applet is hosted. This 

JavaScript function uses the jQuery (De Volder 2006) library to run another PHP page which is 

not opened in the user’s browser and receives a variable back.  
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The PHP page run by the JavaScript function reads the text file created and parses 

through it to identify the URL location of the text file and the time stamp. The URL and time 

stamp are passed back to the JavaScript. If the timestamp for the text file is more recent than the 

time the submit button was pressed the JavaScript will open a message to the user from the web 

page hosting the virtual globe applet. This message asks if the user would like to upload the 

KML file into the virtual globe. If the user selects “OK” the KML is loaded from the URL 

location passed to the JavaScript through the jQuery call to the PHP page. It also generates a new 

message informing the user that a link to download the KML is available on the PHP page that 

has now finished loading. If the user selects “Cancel” then the message about the link disappears 

but the KML is not loaded.  

This process has many pieces but when run by the user the process appears to be quick 

and seamless. From the user’s perspective only the page with the World Wind applet, one more 

tab, and an options message appear. This is done without closing, refreshing, or navigating away 

from the page with the World Wind applet. This is important because any KML files loaded into 

the applet’s virtual globe are lost when the page is reloaded or refreshed. The current process 

allows the user to load KML files without refreshing or reloading so that multiple files can be 

loaded in one session. 
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Figure 9:  General processing workflow for applet. The blue boxes represent elements of the 
workflow and the red ovals represent events within the workflow between elements. The orange 
oval represents the last workflow to be accomplished 
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4 CONCLUSIONS 

The purpose of this project was to develop a prototype website for discovering and 

visualizing 3D subsurface data in a cloud-based environment. This was done through researching 

current 3D subsurface visualization methods. A virtual globe was selected to act as a 

visualization platform for the subsurface data. Two processing routines were also developed to 

extend the work using the ArcGIS and AHGW software packages. Finally, a prototype website 

was created to manage the virtual globe and processing requests to the server. 

4.1 Selection of a Virtual Globe 

Three virtual globes were considered as potential candidates for use in this project - 

Google Earth, Cesium Globe, World Wind. That candidacy was determined based on the 

following three main criteria: 

1. The virtual globe must allow the visualization of subsurface geospatial data as it exists 

below the Earth’s surface. 

2. The virtual globe must be hosted in a publicly accessible website with no requirement for 

special licensing or payments. 

3. The virtual globe must be able to support file types with the Keyhole Markup Language 

such as KML and KMZ which have the file extensions “.kml” and “.kmz” respectively. 
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Google Earth was not used because of its inability to make the surface imagery 

transparent without a Google Enterprise account which could not be obtained within the project 

time-frame. Cesium Globe could not be used because of its lack of support for KML and other 

OGC standard data types. The World Wind globe was found to meet all the requirements of the 

project for the selection of a virtual globe. It also offered the ability to develop a virtual globe as 

both a Java applet in a web page and a Java application run outside of a web browser. 

4.2 Development of World Wind Applets and Applications 

The applet and application developed in this project demonstrate the ability for the World 

Wind globe to show subsurface geospatial data as well as communicate with servers and user 

machines to run data processing routines. 

The applet was able to successfully load KML files from user machines as well as from 

online sources. The application was able to successfully load data from the server and other 

WMS databases, draw a polyline on the globe surface, and initiate a processing routine on the 

server through a PHP web request. 

4.3 Using ArcGIS and AHGW for Web Processing 

ArcGIS with the AHGW plugin was used for data processing routines through Python 

scripts to automatically run processing tools. Different versions of ArcGIS were found to react 

differently to web requests to run these Python scripts making them more or less compatible with 

the scope of this project. ArcGIS version 10.2 was found to be the best fit for running web 

services through PHP and creating KML files from the processing results. 

A process for converting shapefiles from a user machine to a KML file was successfully 

implemented which also loads the generated KML file into the applet globe. 
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A process for generating cross sections from a polyline drawn in the application globe 

was developed. This process successfully initiated a Python script which could run ArcGIS and 

AHGW tools, however only some of the tools from the AHGW toolbox were able to be used due 

to licensing restrictions. Despite this set back the ability for the process to take place was 

demonstrated successfully because the process was initiated and the data about the process was 

returned to the user on the website. 

4.4 Prototype Website Developed 

A website was successfully developed which uses HTML for management of web 

content and JavaScript for hosting the virtual globes through Java WebStart. It also uses PHP 

scripts for handling web requests to send information to and return information from the server 

the website is hosted at. This website successfully demonstrates the ability to use the World 

Wind virtual globe for subsurface data visualization, data discovery, and processing in a cloud-

based environment. 

 

  

45 
 



www.manaraa.com

REFERENCES 

(2014). "Java 7 Release Highlights." Retrieved April, 28, 2014, from 
https://www.java.com/en/download/faq/release_changes.xml. 

Aquaveo (2014). "Arc Hydro Groundwater | Aquaveo.com." Retrieved April, 30, 2014, 
from http://aquaveo.com/software/ahgw-archydro-groundwater-introduction. 

Aquaveo (2014). "Arc Hydro Groundwater Tutorials | Aquaveo.com." 2013, from 
http://aquaveo.com/software/ahgw-learning-tutorials. 

Baru, C., et al. (2008). Integrating diverse geophysical and geological data to construct 
multi-dimensional earth models: the open earth framework. AGU Fall Meeting 
Abstracts. 

Bell, D. G., et al. (2007). NASA World Wind: opensource GIS for mission operations. 
Aerospace Conference, 2007 IEEE, IEEE. 

Boschetti, L., et al. (2008). "Using NASA's World Wind virtual globe for interactive 
internet visualization of the global MODIS burned area product." International 
Journal of Remote Sensing 29(11): 3067-3072. 

Brodaric, B., et al. (2009). Groundwater Information Network: enabling online access 
and analysis of Canadian groundwater information. AGU Spring Meeting 
Abstracts. 

Butler, D. (2006). "Virtual globes: The web-wide world." Nature 439(7078): 776-778. 

Cesium. "Cecium Language (CZML) Guide." 2012, from 
https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Guide. 

Consortium, O. G. (2010). "Inc.(OGC)." Url: http://www. opengeospatial. org. 

Crockford, D. (2006). JSON: The fat-free alternative to XML. Proc. of XML. 

De Volder, K. (2006). JQuery: A generic code browser with a declarative configuration 
language. Practical Aspects of Declarative Languages, Springer: 88-102. 

Google. "Code Playground." Retrieved 2012, 2012, from 
https://code.google.com/apis/ajax/playground/. 

46 
 

http://www.java.com/en/download/faq/release_changes.xml
http://aquaveo.com/software/ahgw-archydro-groundwater-introduction
http://aquaveo.com/software/ahgw-learning-tutorials
http://www/


www.manaraa.com

Java, O. (2014). "Java and Google Chrome Browser." 2013, from 
http://java.com/en/download/faq/chrome.xml. 

Lerdorf, R., et al. (2006). Programming Php, O'Reilly Media. 

Mathers, S. and H. Kessler (2010). "GSI3D. Version 2.6 user manual." 

Meertens, C., et al. (2006). The GEON IDV (Integrated Data Viewer) for data 
exploration and discovery in the geosciences. AGU Fall Meeting Abstracts. 

Smith, K. and D. Whitman (2013). "Digcrust Home." from http://digcrust.byu.edu/. 

Userguide, I. (2009). "Unidata’s Integrated Data Viewer." Version 2: u2. 

Wilson, T. (2008). "OGC Keyhole Markup Language, 2.2. 0." Open GIS Consortium. 

Wind, W. "goworldwind.org." 2012, from http://goworldwind.org/. 

Workflows, L. and G. Portal "GEON." 

Zukowski, J. (2002). "Deploying software with jnlp and java web start." Retrieved 
December 3: 2007. 

 

 

47 
 

http://java.com/en/download/faq/chrome.xml
http://digcrust.byu.edu/
http://goworldwind.org/


www.manaraa.com

APPENDIX A SETTING UP SOURCE CODE LIBRARIES IN ECLIPSE 

The following steps illustrate how to set up the source code libraries and basic application 

code for the World Wind Java source code. 

1. Create a new Eclipse project: 
a. In the top menu select File>>New>>Project.  
b. The New Project wizard should pop up. Select Java>>Java Project and click 

“Next.” 
c. Assign a project name such as “testWorldWind” and select “Finish.” 

2. Create the “lib” folder under this project: 
a. The project you created should show up in the “Package Explorer” window on the 

left. Right click on the project name and select “Properties.” 
b. A new window should pop up for your project properties. From the menu on the 

left select “Java Build Path.” 
c. Select the “Source” tab and click the “Add Folder…” then in the new window 

click “Create New Folder…” and name the folder “Lib” and click “Finish” and 
“OK” and “OK” in the last remaining window. 

d. In the “Package Explorer” window on the left expand the contents under your 
new project by clicking the triangle next to the name. You should see a folder 
named “src” another named “Lib” and the “JRE System Library.” 

3. Put required libraries and DLLs into the “Lib” folder: 
a. Navigate to the main folder where you have saved the Java source code on your 

machine. 
b. Copy the following files onto your clip board: gluegen-rt.jar, gluegen-rt.dll, 

jogl.jar, jogl.dll, worldwind.jar, jogl_awt.dll, jogl_cg.dll 
i. For this project the plugin.jar & worldwindx.jar files were also copied but 

are not necessary for a very basic application. 
c. Paste all of these files into the “Lib” folder inside of the “Package Explorer” 

window. 
4. Add all JARs in the “Lib” folder into the “Referenced Libraries” tree: 

a. Expand the “Lib” folder in the “Package Explorer” window and right click on 
“jogl.jar” then select Build Path>>Add to Build Path. 
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b. Repeat this for all of the JAR files in the “Lib” folder one at a time. 
c. The “Referenced Libraries” tree should appear under your project. Expand it to 

show all of the JARs you have added. 
d. Right click on “jogl.jar” in the “Referenced Libraries tree and select 

BuildPath>>Configure Build Path. 
e. A new “Properties” dialog box will appear. Select the “Libraries” tab and expand 

the “jogl.jar” tree. 
f. Select “Native Library location” and click on the “Edit” button on the right. 
g. In the new window “Native Library Folder Configuration” click the 

“Workspace…” button. 
h. Locate your project in the new window and expand it to show the “Lib” folder. 

Select the “Lib” folder and click “OK” then “OK” again then “OK” again. 
5. Create a package and class and add code: 

a. In the “Package Explorer” window create a new package by right clicking on the 
“src” folder and selecting New>>Package. 

b. Assign a name for your package like “testWorldWind.” You should see your 
package appear in the “Package Explorer” window under the “src” folder. 

c. Right click on the new package and select New>>Class. Enter the name 
“SimplestPossibleExample” then uncheck all options under the question “Which 
method stubs would you like to create?” and click on “Finish.” 

i. Some code should pop up in the Eclipse code window stating the package 
and creating a public class. 

ii. Delete all of the code other than the first line stating the package. 
d. Navigate to the main folder of your World Wind source code and navigate from 

there to …src/gov/nasa/worldwindx/examples/ 
e. Open the file “SimplestPossibleExample.java” with some sort of text editor. 
f. Copy the contents of that file other than the first line stating the package. 
g. Paste it into the code window under the line stating the package and save your 

changes.  
6. Run your code. 

a. If you have done everything right you should be able to run your code by pressing 
the green play button in the tool bar on the top. 

b. If you have named your class something other than “SimplestPossibleExample” 
you may need to make other adjustments in your code to match the class name 
you assigned. 

c. These instructions will work for the applications and applets. You can create a 
very basic applet by repeating step 5 using the class name “WWJAppletMinimal” 
and the file in the source code at 
…src/gov/nasa/worldwindx/examples/applet/WWJAppletMinimal.java 
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APPENDIX B CREATING APPLICATIONS AND APPLETS 

This appendix shows the code developed to create the application and applet in used in 

this research project. 

B.1 Application Code Examples 

This section shows the classes used to develop the application used in this research 

project. The names of the subsections that follow indicate the name of the Java file class which 

the code is for. 

B.1.a KMLViewer 
package digcrustApplications; 
//imports from KMLViewer 
import gov.nasa.worldwind.WorldWind; 
import gov.nasa.worldwind.avlist.AVKey; 
import gov.nasa.worldwind.retrieve.RetrievalService; 
import gov.nasa.worldwindx.examples.ApplicationTemplate; 
import gov.nasa.worldwindx.examples.kml.*; 
import gov.nasa.worldwindx.examples.util.*; 
import gov.nasa.worldwind.util.layertree.*; 
import gov.nasa.worldwind.layers.*; 
import gov.nasa.worldwind.ogc.kml.*; 
import gov.nasa.worldwind.ogc.kml.impl.KMLController; 
import gov.nasa.worldwind.render.Offset; 
import gov.nasa.worldwind.render.Renderable; 
import gov.nasa.worldwind.util.*; 
import javax.swing.*; 
import javax.swing.filechooser.*; 
import javax.xml.stream.XMLStreamException; 
import java.awt.*; 
import java.awt.event.*; 
import java.beans.*; 
import java.io.*; 
import java.net.URL; 
//imports from ExtrudedShapes 
import gov.nasa.worldwind.View; 
import gov.nasa.worldwind.avlist.AVKey; 
import gov.nasa.worldwind.event.*; 
import gov.nasa.worldwind.geom.Position; 
import gov.nasa.worldwind.layers.RenderableLayer; 
import gov.nasa.worldwind.render.*; 

50 
 



www.manaraa.com

import gov.nasa.worldwind.render.airspaces.*; 
import gov.nasa.worldwind.render.airspaces.Polygon; 
import gov.nasa.worldwind.util.WWIO; 
import gov.nasa.worldwindx.examples.util.ExampleUtil; 
import java.io.*; 
import java.util.*; 
import java.util.zip.*; 
 
public class KMLViewer extends ApplicationTemplate 
{ 
 /** 
 * 
 */ 
 public static Boolean addornot; 
  
 public static class AppFrame extends ApplicationTemplate.AppFrame 
    { 
        protected LayerTree layerTree; 
        protected RenderableLayer hiddenLayer; 
 
        protected HotSpotController hotSpotController; 
        protected KMLApplicationController kmlAppController; 
        protected BalloonController balloonController; 
         
        protected JPanel WebPanel; 
 
  public AppFrame() 
        { 
            super(true, false, false); // Don't include the layer panel; we're 

using the on-screen layer tree. 
 
            // Add the on-screen layer tree, refreshing model with the 

WorldWindow's current layer list. We 
            // intentionally refresh the tree's model before adding the layer 

that contains the tree itself. This 
            // prevents the tree's layer from being displayed in the tree 

itself. 
            this.layerTree = new LayerTree(new Offset(20d, 160d, AVKey.PIXELS, 

AVKey.INSET_PIXELS)); 
            

this.layerTree.getModel().refresh(this.getWwd().getModel().getLayers()); 
            this.WebPanel = new JPanel(); 
            WebPanel.setSize(100, 100); 
             
            // Set up a layer to display the on-screen layer tree in the 

WorldWindow. This layer is not displayed in 
            // the layer tree's model. Doing so would enable the user to hide 

the layer tree display with no way of 
            // bringing it back. 
            this.hiddenLayer = new RenderableLayer(); 
            this.hiddenLayer.addRenderable(this.layerTree); 
            this.getWwd().getModel().getLayers().add(this.hiddenLayer); 
             
            // Add a controller to handle input events on the layer selector 

and on browser balloons. 
            this.hotSpotController = new HotSpotController(this.getWwd()); 
 
            // Add a controller to handle common KML application events. 
            this.kmlAppController = new 

KMLApplicationController(this.getWwd()); 
 
            // Add a controller to display balloons when placemarks are 

clicked. We override the method addDocumentLayer 
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            // so that loading a KML document by clicking a KML balloon link 
displays an entry in the on-screen layer 

            // tree. 
            this.balloonController = new BalloonController(this.getWwd()) 
            { 
                @Override 
                protected void addDocumentLayer(KMLRoot document) 
                { 
                    addKMLLayer(document); 
                } 
            }; 
 
            // Give the KML app controller a reference to the BalloonController 

so that the app controller can open 
            // KML feature balloons when feature's are selected in the on-

screen layer tree. 
            this.kmlAppController.setBalloonController(balloonController); 
 
            // Size the World Window to take up the space typically used by the 

layer panel. 
            Dimension size = new Dimension(800, 800); 
            this.setPreferredSize(size); 
            this.pack(); 
            WWUtil.alignComponent(null, this, AVKey.CENTER); 
 
            makeMenu(this); 
 
            // Set up to receive SSLHandshakeExceptions that occur during 

resource retrieval. 
            WorldWind.getRetrievalService().setSSLExceptionListener(new 

RetrievalService.SSLExceptionListener() 
            { 
                public void onException(Throwable e, String path) 
                { 
                    System.out.println(path); 
                    System.out.println(e); 
                } 
            }); 
        } 
 
        /** 
         * Adds the specified <code>kmlRoot</code> to this app frame's 

<code>WorldWindow</code> as a new 
         * <code>Layer</code>, and adds a new <code>KMLLayerTreeNode</code> for 

the <code>kmlRoot</code> to this app 
         * frame's on-screen layer tree. 
         * <p/> 
         * This expects the <code>kmlRoot</code>'s 

<code>AVKey.DISPLAY_NAME</code> field to contain a display name 
         * suitable for use as a layer name. 
         * 
         * @param kmlRoot the KMLRoot to add a new layer for. 
         */ 
        protected void addKMLLayer(KMLRoot kmlRoot) 
        { 
            // Create a KMLController to adapt the KMLRoot to the World Wind 

renderable interface. 
            KMLController kmlController = new KMLController(kmlRoot); 
             
            // Adds a new layer containing the KMLRoot to the end of the 

WorldWindow's layer list. This 
            // retrieves the layer name from the KMLRoot's DISPLAY_NAME field. 
            RenderableLayer layer = new RenderableLayer(); 
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            layer.setName((String) kmlRoot.getField(AVKey.DISPLAY_NAME)); 
            layer.addRenderable(kmlController); 
            String lyrDescription = layer.getValues().toString(); 
            this.getWwd().getModel().getLayers().add(layer); 
 
            // Adds a new layer tree node for the KMLRoot to the on-screen 

layer tree, and makes the new node visible 
            // in the tree. This also expands any tree paths that represent 

open KML containers or open KML network 
            // links. 
            KMLLayerTreeNode layerNode = new KMLLayerTreeNode(layer, kmlRoot); 
            this.layerTree.getModel().addLayer(layerNode); 
            this.layerTree.makeVisible(layerNode.getPath()); 
            layerNode.expandOpenContainers(this.layerTree); 
 
            // Listens to refresh property change events from KML network link 

nodes. Upon receiving such an event this 
            // expands any tree paths that represent open KML containers. When 

a KML network link refreshes, its tree 
            // node replaces its children with new nodes created from the 

refreshed content, then sends a refresh 
            // property change event through the layer tree. By expanding open 

containers after a network link refresh, 
            // we ensure that the network link tree view appearance is 

consistent with the KML specification. 
            

layerNode.addPropertyChangeListener(AVKey.RETRIEVAL_STATE_SUCCESSFUL, new 
PropertyChangeListener() 

            { 
                public void propertyChange(final PropertyChangeEvent event) 
                { 
                    if (event.getSource() instanceof KMLNetworkLinkTreeNode) 
                    { 
                        // Manipulate the tree on the EDT. 
                        SwingUtilities.invokeLater(new Runnable() 
                        { 
                            public void run() 
                            { 
                                ((KMLNetworkLinkTreeNode) 

event.getSource()).expandOpenContainers(layerTree); 
                                getWwd().redraw(); 
                            } 
                        }); 
                    } 
                } 
            }); 
        } 
    } 
 
    /** A <code>Thread</code> that loads a KML file and displays it in an 

<code>AppFrame</code>. */ 
    public static class WorkerThread extends Thread 
    { 
        /** Indicates the source of the KML file loaded by this thread. 

Initialized during construction. */ 
        protected Object kmlSource; 
        /** Indicates the <code>AppFrame</code> the KML file content is 

displayed in. Initialized during construction. */ 
        protected AppFrame appFrame; 
 
        /** 
         * Creates a new worker thread from a specified <code>kmlSource</code> 

and <code>appFrame</code>. 
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         * 
         * @param kmlSource the source of the KML file to load. May be a {@link 

File}, a {@link URL}, or an {@link 
         *                  java.io.InputStream}, or a {@link String} 

identifying a file path or URL. 
         * @param appFrame  the <code>AppFrame</code> in which to display the 

KML source. 
         */ 
        public WorkerThread(Object kmlSource, AppFrame appFrame) 
        { 
            this.kmlSource = kmlSource; 
            this.appFrame = appFrame; 
        } 
 
        /** 
         * Loads this worker thread's KML source into a new <code>{@link 

gov.nasa.worldwind.ogc.kml.KMLRoot}</code>, 
         * then adds the new <code>KMLRoot</code> to this worker thread's 

<code>AppFrame</code>. The 
         * <code>KMLRoot</code>'s <code>AVKey.DISPLAY_NAME</code> field 

contains a display name created from either the 
         * KML source or the KML root feature name. 
         * <p/> 
         * If loading the KML source fails, this prints the exception and its 

stack trace to the standard error stream, 
         * but otherwise does nothing. 
         */ 
        public void run() 
        { 
            try 
            { 
                KMLRoot kmlRoot = this.parse(); 
 
                // Set the document's display name 
                kmlRoot.setField(AVKey.DISPLAY_NAME, formName(this.kmlSource, 

kmlRoot)); 
 
                // Schedule a task on the EDT to add the parsed document to a 

layer 
                final KMLRoot finalKMLRoot = kmlRoot; 
                SwingUtilities.invokeLater(new Runnable() 
                { 
                    public void run() 
                    {     
                        appFrame.addKMLLayer(finalKMLRoot);    

   
                    } 
                }); 
            } 
            catch (Exception e) 
            { 
                e.printStackTrace(); 
            } 
        } 
 
        /** 
         * Parse the KML document. 
         * 
         * @return The parsed document. 
         * 
         * @throws IOException        if the document cannot be read. 
         * @throws XMLStreamException if document cannot be parsed. 
         */ 
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        protected KMLRoot parse() throws IOException, XMLStreamException 
        { 
            // KMLRoot.createAndParse will attempt to parse the document using 

a namespace aware parser, but if that 
            // fails due to a parsing error it will try again using a namespace 

unaware parser. Note that this second 
            // step may require the document to be read from the network again 

if the kmlSource is a stream. 
            return KMLRoot.createAndParse(this.kmlSource); 
        } 
    } 
 
    protected static String formName(Object kmlSource, KMLRoot kmlRoot) 
    { 
        KMLAbstractFeature rootFeature = kmlRoot.getFeature(); 
        if (rootFeature != null && !WWUtil.isEmpty(rootFeature.getName())) 
            return rootFeature.getName(); 
 
        if (kmlSource instanceof File) 
            return ((File) kmlSource).getName(); 
 
        if (kmlSource instanceof URL) 
            return ((URL) kmlSource).getPath(); 
 
        if (kmlSource instanceof String && WWIO.makeURL((String) kmlSource) != 

null) 
            return WWIO.makeURL((String) kmlSource).getPath(); 
 
        return "KML Layer"; 
    } 
 
    protected static void makeMenu(final AppFrame appFrame) 
    { 
        final JFileChooser fileChooser = new JFileChooser(); 
        fileChooser.setMultiSelectionEnabled(true); 
        fileChooser.addChoosableFileFilter(new FileNameExtensionFilter("KML/KMZ 

File", "kml", "kmz")); 
 
        JMenuBar menuBar = new JMenuBar(); 
        appFrame.setJMenuBar(menuBar); 
        JMenu fileMenu = new JMenu("File"); 
        menuBar.add(fileMenu); 
 
        JMenuItem openFileMenuItem = new JMenuItem(new AbstractAction("Open 

File...") 
        { 
            public void actionPerformed(ActionEvent actionEvent) 
            { 
                try 
                { 
                    int status = fileChooser.showOpenDialog(appFrame); 
                    if (status == JFileChooser.APPROVE_OPTION) 
                    { 
                        for (File file : fileChooser.getSelectedFiles()) 
                        { 
                         //add the kml file 
                            new WorkerThread(file, appFrame).start(); 
                            String filePath = file.toString(); 
                            System.out.println(filePath); 
                            /*THIS PART ZOOMS TO THE APX CENTER OF THE KML FILE 

BUT IT  
                             * ONLY WORKS WITH KML FILES NOT KMZ 
                            View view = appFrame.getWwd().getView(); 
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                            double lon = 
ReadingFiles.CoordinateGeometry("file", filePath, "lon"); 

                            double lat = 
ReadingFiles.CoordinateGeometry("file", filePath, "lat"); 

                            double alt = 
ReadingFiles.CoordinateGeometry("file", filePath, "alt"); 

                            view.setEyePosition(Position.fromDegrees(lat, lon, 
alt)); 

                            System.out.println(lon + ", " + lat + ", " + 
alt);*/ 

                        } 
                    } 
                } 
                catch (Exception e) 
                { 
                    e.printStackTrace(); 
                } 
            } 
        }); 
 
        fileMenu.add(openFileMenuItem); 
 
        JMenuItem openURLMenuItem = new JMenuItem(new AbstractAction("Open 

URL...") 
        { 
            public void actionPerformed(ActionEvent actionEvent)  
            { 
                try 
                { 
                    String status = JOptionPane.showInputDialog(appFrame, 

"URL"); 
                    if (!WWUtil.isEmpty(status)) 
                    { 
                     //add the kml from URL 
                        new WorkerThread(status.trim(), appFrame).start(); 
                        String file = status.toString().trim(); 
                        System.out.println(file); 
                        /*THIS PART ZOOMS TO THE APX CENTER OF THE KML FILE BUT 

IT  
                         * ONLY WORKS WITH KML FILES NOT KMZ 
                        View view = appFrame.getWwd().getView(); 
                        double lon = ReadingFiles.CoordinateGeometry("url", 

file, "lon"); 
                        double lat = ReadingFiles.CoordinateGeometry("url", 

file, "lat"); 
                        double alt = ReadingFiles.CoordinateGeometry("url", 

file, "alt"); 
                        view.setEyePosition(Position.fromDegrees(lat, lon, 

alt)); 
                        System.out.println(lon + ", " + lat + ", " + alt);*/ 
                    } 
                } 
                catch (Exception e) 
                { 
                    e.printStackTrace(); 
                } 
            } 
        }); 
 
        fileMenu.add(openURLMenuItem); 
    } 
 
    public static void main(String[] args) 
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    { 
        //noinspection UnusedDeclaration 
        final AppFrame af = (AppFrame) start("World Wind KML Viewer", 

AppFrame.class); 
    } 
} 

 

B.1.b  ReadingFiles 
package digcrustApplications; 
 
import java.io.*; 
import java.net.URL; 
import java.util.*; 
 
import javax.swing.JOptionPane; 
 
import org.w3c.dom.NodeList; 
 
import com.sun.corba.se.impl.orbutil.graph.Node; 
import com.sun.org.apache.xerces.internal.impl.xpath.XPath; 
 
/** 
 * This class is created to extract coordinate information from a kml file 
 * This class structure assumes that only one type of tag is on any single line 
 * it watches for the case when the opening and closing coordinate tags are on 

the same line together with the coordinate numbers 
 * and also for the case when the the opening and closing coordinate tags are 

on separate lines with the coordinate numbers 
 * on the lines in between 
 * @author D.Whitman 
 * 
 */ 
public class ReadingFiles  
{ 
 //each element of CoordinateSets holds all the coordinate information for 

a single coordinate tag 
 protected static ArrayList <String> CoordinateSets = new 

ArrayList<String>(); 
  
 public static ArrayList <String> ReadingFiles (String FileOrUrl, String 

path) throws IOException 
 { 
  try 
  { 
   DataInputStream in = null; 
   if (FileOrUrl == "file") 
   { 
    FileInputStream fstream = new FileInputStream(path); 
    in = new DataInputStream(fstream); 
   } 
   else if (FileOrUrl == "url") 
   { 
    InputStream input = new URL(path).openStream(); 
    in = new DataInputStream(input); 
   } 
   BufferedReader br = new BufferedReader(new 

InputStreamReader(in)); 
   String strLine; 
   String front = "<coordinates>"; 
   String back = "</coordinates>"; 
   String comma = ","; 
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   String whiteFront = ""; 
   int count = 0; //counts the number of instances where the 

front variable is found 
   int frontIndex = 0;  
   int backIndex = 0; 
    
   boolean junkLine = true; //true for lines where no 

coordinate information is found i.e. junk 
   while ((strLine=br.readLine()) != null) //loops through 

each line of code 
   { 
    frontIndex = strLine.indexOf(front);  
    backIndex = strLine.indexOf(back); 
    if(frontIndex != -1) //true if opening coordinate tag 

is on this line 
    { 
     junkLine = false; 
     count++; 
    } 
    if(backIndex != -1) // true if closing coordinate tag 

is on this line 
    { 
     junkLine = true; 
    } 
     
    if(frontIndex != -1 && backIndex != -1) //true if 

opening and closing tags are both on the same line 
    { 
     whiteFront = strLine.substring(frontIndex + 

front.length(),backIndex); //print substring without tags (only coordinates) 
     whiteFront = whiteFront.trim(); 
     CoordinateSets.add(whiteFront); 
    } 
    else if (junkLine == false && strLine.indexOf(comma) 

!= -1) //true if after opening coordinate tag and has commas (or coordinate numbers) 
    { 
     whiteFront = strLine.trim(); 
     CoordinateSets.add(whiteFront); 
    } 
   } 
   in.close(); 
  }//end try 
  catch (Exception e) 
  { 
   System.err.println("Error: " + e.getMessage()); 
   JOptionPane.showMessageDialog(null, "Error: " + 

e.getMessage()); 
  }//end catch 
  return CoordinateSets; 
 }//end of main 
 /**This method returns the approximate center latitude and longitude of 

the specified kml file  
  * as well as the approximate altitude at which the extent of the data 

can be viewed from the  
  * center location looking straight down. 
  * @param FileOrUrl 
  *  Specify whether a file or a url is being read with the string 

inputs "file" or "url" passed into  
  *  this argument. 
  * @param path 
  *  Pass in a string equal to "lon", "lat", or "alt" to return the center 

latitude, longitude, or  
  *  viewing altitude respectively. 
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  * @param LonOrLatOrAlt 
  *  Pass in a string equal to "lon", "lat", or "alt" to return the 

center latitude, longitude, or  
  *  viewing altitude respectively. 
  * @return 
  *  Returns a double. 
  * @throws IOException 
  */ 
 public static double CoordinateGeometry(String FileOrUrl, String path, 

String LonOrLatOrAlt) throws IOException 
 { 
  ReadingFiles(FileOrUrl, path); 
   
  double centerLon = 0; 
  double centerLat = 0; 
  double centerAlt = 0; 
  double centerReturn=0; 
  int countGeometries=0; 
  for(int index1=0; index1<CoordinateSets.size(); index1++) 
  { 
   for(int index2=0; 

index2<FindSingleSet(index1,CoordinateSets).size(); index2++) 
   { 
    centerLon=centerLon+FindLonLatAlt(index1,index2,0); 
    centerLat=centerLat+FindLonLatAlt(index1,index2,1); 
    countGeometries++; 
   } 
  } 
  centerLon=centerLon/countGeometries; 
  centerLat=centerLat/countGeometries; 
  double maxDist = 0; //maximum distance from center location to 

another location 
  double iDist = 0; //instantaneous distance from center location to 

instantaneous location 
  double iLon = 0; //instantaneous longitude being compared to 

centerLon 
  double iLat = 0; //instantaneous latitude being compared to 

centerLat 
  for(int indexA=0; indexA<CoordinateSets.size(); indexA++) 
  { 
   for(int indexB=0; 

indexB<FindSingleSet(indexA,CoordinateSets).size(); indexB++) 
   { 
    iLon = FindLonLatAlt(indexA,indexB,0); 
    iLat = FindLonLatAlt(indexA,indexB,1); 
    iDist = Math.sqrt(Math.pow(iLon-

centerLon,2)+Math.pow(iLat-centerLat,2)); 
    if (iDist > maxDist) 
    { 
     maxDist = iDist; 
    } 
   } 
  } 
  centerAlt = maxDist*100000/Math.tan(0.402); 
 
  if(LonOrLatOrAlt == "lon") 
  { 
   centerReturn = centerLon; 
  } 
  else if (LonOrLatOrAlt == "lat") 
  { 
   centerReturn = centerLat; 
  } 
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  else if (LonOrLatOrAlt == "alt") 
  { 
   centerReturn = centerAlt; 
  } 
 
  return centerReturn; 
 } 
 /**This returns a string containing the Longitude,Latitude,Altitude of 

the  
  * specified index from the ArrayList CoordinateSets 
  */ 
 public static List<String> FindSingleSet(int index, ArrayList<String> 

CoordinateSets) 
 { 
   
  String set = CoordinateSets.get(index); 
  //each element of Location holds a single lon,lat,alt string from 

CoordinateSets 
  List<String> SingleSet = Arrays.asList(set.trim().split(" ")); 
  return SingleSet; 
 } 
 /**This returns a double representing the latitude, longitude, or 

altitude of the  
  * specified set of indexes. 
  * @param index1 
  *  Integer representing the index of coordinates tag within kml file. 
  * @param index2 
  *  Integer representing the index of a specific coordinate set within 

a specific coordinate 
  *  tag specified by index1. 
  * @param index3 
  *  Integer 0,1, or 2 only to represent the index of the longitude, 

latitude, or altitude  
  *  respectively within a specific coordinate set of a specific 

coordinate tag within the  
  *  kml file. 
  * @return 
  *  Returns a double for longitude, latitude, or latitude. 
  */ 
 public static double FindLonLatAlt (int index1, int index2, int index3) 
 { 
  List<String> SingleSet = FindSingleSet(index1,CoordinateSets); 
  String xyz = SingleSet.get(index2); 
  List<String> LonLatAlt = Arrays.asList(xyz.trim().split(",")); 
  String numString = LonLatAlt.get(index3); 
  double numLocation = Double.parseDouble(numString); 
  return numLocation; 
 } 
}//end of ReadingFiles class 

 

B.1.c  LineBuilder 
 
package digcrustApplications; 
 
import gov.nasa.worldwind.*; 
import gov.nasa.worldwind.event.*; 
import gov.nasa.worldwind.avlist.*; 
import gov.nasa.worldwind.geom.*; 
import gov.nasa.worldwind.layers.*; 
import gov.nasa.worldwind.render.*; 
import gov.nasa.worldwind.util.Logging; 

60 
 



www.manaraa.com

import gov.nasa.worldwind.util.WWIO; 
 
import javax.swing.*; 
import javax.swing.border.*; 
import javax.xml.transform.TransformerConfigurationException; 
 
import java.awt.*; 
import java.awt.event.*; 
import java.beans.*; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.InputStream; 
import java.util.*; 
 
/** 
 * A utility class to interactively build a polyline. When armed, the class 

monitors mouse events and adds new positions 
 * to a polyline as the user identifies them. The interaction sequence for 

creating a line is as follows: <ul> <li> Arm 
 * the line builder by calling its {@link #setArmed(boolean)} method with an 

argument of true. </li> <li> Place the 
 * cursor at the first desired polyline position. Press and release mouse 

button one. </li> <li> Press button one near 
 * the next desired position, drag the mouse to the exact position, then 

release the button. The proposed line segment 
 * will echo while the mouse is dragged. Continue selecting new positions this 

way until the polyline contains all 
 * desired positions. </li> <li> Disarm the <code>LineBuilder</code> object by 

calling its {@link #setArmed(boolean)} 
 * method with an argument of false. </li> </ul> 
 * <p/> 
 * While the line builder is armed, pressing and immediately releasing mouse 

button one while also pressing the control 
 * key (Ctl) removes the last position from the polyline. </p> 
 * <p/> 
 * Mouse events the line builder acts on while armed are marked as consumed. 

These events are mouse pressed, released, 
 * clicked and dragged. These events are not acted on while the line builder is 

not armed. The builder can be 
 * continuously armed and rearmed to allow intervening maneuvering of the globe 

while building a polyline. A user can 
 * add positions, pause entry, maneuver the view, then continue entering 

positions. </p> 
 * <p/> 
 * Arming and disarming the line builder does not change the contents or 

attributes of the line builder's layer. </p> 
 * <p/> 
 * The polyline and a layer containing it may be specified when a 

<code>LineBuilder</code> is constructed. </p> 
 * <p/> 
 * This class contains a <code>main</code> method implementing an example 

program illustrating use of 
 * <code>LineBuilder</code>. </p> 
 * 
 * @author tag 
 * @version $Id: LineBuilder.java 1 2011-07-16 23:22:47Z dcollins $ 
 */ 
public class LineBuilder extends AVListImpl 
{ 
    private final WorldWindow wwd; 
    private boolean armed = false; 
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    private static ArrayList<Position> positions = new ArrayList<Position>(); 
    private final RenderableLayer layer; 
    private final Polyline line; 
    private boolean active = false; 
 
    /** 
     * Construct a new line builder using the specified polyline and layer and 

drawing events from the specified world 
     * window. Either or both the polyline and the layer may be null, in which 

case the necessary object is created. 
     * 
     * @param wwd       the world window to draw events from. 
     * @param lineLayer the layer holding the polyline. May be null, in which 

case a new layer is created. 
     * @param polyline  the polyline object to build. May be null, in which 

case a new polyline is created. 
     */ 
    public LineBuilder(final WorldWindow wwd, RenderableLayer lineLayer, 

Polyline polyline) 
    { 
        this.wwd = wwd; 
 
        if (polyline != null) 
        { 
            line = polyline; 
        } 
        else 
        { 
            this.line = new Polyline(); 
            this.line.setFollowTerrain(true); 
        } 
        this.layer = lineLayer != null ? lineLayer : new RenderableLayer(); 
        this.layer.addRenderable(this.line); 
        this.wwd.getModel().getLayers().add(this.layer); 
 
        this.wwd.getInputHandler().addMouseListener(new MouseAdapter() 
        { 
            public void mousePressed(MouseEvent mouseEvent) 
            { 
                if (armed && mouseEvent.getButton() == MouseEvent.BUTTON1) 
                { 
                    if (armed && (mouseEvent.getModifiersEx() & 

MouseEvent.BUTTON1_DOWN_MASK) != 0) 
                    { 
                        if (!mouseEvent.isControlDown()) 
                        { 
                            active = true; 
                            addPosition();                           
                        } 
                    } 
                    mouseEvent.consume(); 
                } 
            } 
 
            public void mouseReleased(MouseEvent mouseEvent) 
            { 
                if (armed && mouseEvent.getButton() == MouseEvent.BUTTON1) 
                { 
                    if (positions.size() == 1) 
                        removePosition(); 
                    active = false; 
                    mouseEvent.consume(); 
                } 

62 
 



www.manaraa.com

            } 
 
            public void mouseClicked(MouseEvent mouseEvent) 
            { 
                if (armed && mouseEvent.getButton() == MouseEvent.BUTTON1) 
                { 
                    if (mouseEvent.isControlDown()) 
                        removePosition(); 
                    mouseEvent.consume(); 
                } 
            } 
        }); 
 
        this.wwd.getInputHandler().addMouseMotionListener(new 

MouseMotionAdapter() 
        { 
            public void mouseDragged(MouseEvent mouseEvent) 
            { 
                if (armed && (mouseEvent.getModifiersEx() & 

MouseEvent.BUTTON1_DOWN_MASK) != 0) 
                { 
                    // Don't update the polyline here because the wwd current 

cursor position will not 
                    // have been updated to reflect the current mouse position. 

Wait to update in the 
                    // position listener, but consume the event so the view 

doesn't respond to it. 
                    if (active) 
                        mouseEvent.consume(); 
                } 
            } 
        }); 
 
        this.wwd.addPositionListener(new PositionListener() 
        { 
            public void moved(PositionEvent event) 
            { 
                if (!active) 
                    return; 
 
                if (positions.size() == 1) 
                    addPosition(); 
                else 
                    replacePosition(); 
            } 
        }); 
    } 
 
    /** 
     * Returns the layer holding the polyline being created. 
     * 
     * @return the layer containing the polyline. 
     */ 
    public RenderableLayer getLayer() 
    { 
        return this.layer; 
    } 
 
    /** 
     * Returns the layer currently used to display the polyline. 
     * 
     * @return the layer holding the polyline. 
     */ 
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    public Polyline getLine() 
    { 
        return this.line; 
    } 
 
    /** 
     * Removes all positions from the polyline. 
     */ 
    public void clear() 
    { 
        while (this.positions.size() > 0) 
            this.removePosition(); 
    } 
 
    /** 
     * Identifies whether the line builder is armed. 
     * 
     * @return true if armed, false if not armed. 
     */ 
    public boolean isArmed() 
    { 
        return this.armed; 
    } 
 
    /** 
     * Arms and disarms the line builder. When armed, the line builder monitors 

user input and builds the polyline in 
     * response to the actions mentioned in the overview above. When disarmed, 

the line builder ignores all user input. 
     * 
     * @param armed true to arm the line builder, false to disarm it. 
     */ 
    public void setArmed(boolean armed) 
    { 
        this.armed = armed; 
    } 
 
    private void addPosition() 
    { 
        Position curPos = this.wwd.getCurrentPosition(); 
        if (curPos == null) 
            return; 
 
        this.positions.add(curPos); 
        this.line.setPositions(this.positions); 
        this.firePropertyChange("LineBuilder.AddPosition", null, curPos); 
        this.wwd.redraw(); 
    } 
 
    private void replacePosition() 
    { 
        Position curPos = this.wwd.getCurrentPosition(); 
        if (curPos == null) 
            return; 
 
        int index = this.positions.size() - 1; 
        if (index < 0) 
            index = 0; 
 
        Position currentLastPosition = this.positions.get(index); 
        this.positions.set(index, curPos); 
        this.line.setPositions(this.positions); 
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        this.firePropertyChange("LineBuilder.ReplacePosition", 
currentLastPosition, curPos); 

        this.wwd.redraw(); 
    } 
 
    private void removePosition() 
    { 
        if (this.positions.size() == 0) 
            return; 
 
        Position currentLastPosition = this.positions.get(this.positions.size() 

- 1); 
        this.positions.remove(this.positions.size() - 1); 
        this.line.setPositions(this.positions); 
        this.firePropertyChange("LineBuilder.RemovePosition", 

currentLastPosition, null); 
        this.wwd.redraw(); 
    } 
 
    // ===================== Control Panel ======================= // 
    // The following code is an example program illustrating LineBuilder usage. 

It is not required by the 
    // LineBuilder class, itself. 
 
    private static class WebPanel extends JPanel 
    { 
     protected static final String BROWSER_BALLOON_CONTENT_PATH = 

"WebsiteTest.html"; 
      
     private final WorldWindow wwd; 
      
     public WebPanel(WorldWindow wwd) 
     { 
      this.wwd = wwd; 
      this.setSize(200, 200); 
       String htmlString = null; 
             InputStream contentStream = null; 
 
             try 
             { 
                 // Read the URL content into a String using the default 

encoding (UTF-8). 
                 contentStream = 

WWIO.openFileOrResourceStream(BROWSER_BALLOON_CONTENT_PATH, this.getClass()); 
                 htmlString = WWIO.readStreamToString(contentStream, null); 
             } 
             catch (Exception e) 
             { 
                 e.printStackTrace(); 
             } 
             finally 
             { 
                 WWIO.closeStream(contentStream, BROWSER_BALLOON_CONTENT_PATH); 
             } 
 
             if (htmlString == null) 
                 htmlString = 

Logging.getMessage("generic.ExceptionAttemptingToReadFile", 
BROWSER_BALLOON_CONTENT_PATH); 

     } 
    } 
    private static class LinePanel extends JPanel 
    { 
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        private final WorldWindow wwd; 
        private final LineBuilder lineBuilder; 
        private JButton newButton; 
        private JButton pauseButton; 
        private JButton endButton; 
        private JLabel[] pointLabels; 
 
         public LinePanel(WorldWindow wwd, LineBuilder lineBuilder) 
        { 
            super(new BorderLayout()); 
            this.wwd = wwd; 
            this.lineBuilder = lineBuilder; 
            this.makePanel(new Dimension(100, 100)); 
            lineBuilder.addPropertyChangeListener(new PropertyChangeListener() 
            { 
                public void propertyChange(PropertyChangeEvent 

propertyChangeEvent) 
                { 
                    fillPointsPanel(); 
                } 
            }); 
        } 
 
        private void makePanel(Dimension size) 
        { 
            JPanel buttonPanel = new JPanel(new GridLayout(2, 2, 5, 5)); 
             
/////////////////////////////example of how to add a button             
            newButton = new JButton("New"); 
            newButton.addActionListener(new ActionListener() 
            { 
                public void actionPerformed(ActionEvent actionEvent) 
                { 
                    lineBuilder.clear(); 
                    lineBuilder.setArmed(true); 
                    pauseButton.setText("Pause"); 
                    pauseButton.setEnabled(true); 
                    endButton.setEnabled(true); 
                    newButton.setEnabled(false); 
                    ((Component) 

wwd).setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR)); 
                } 
            }); 
            buttonPanel.add(newButton); 
            newButton.setEnabled(true); 
//////////////////////////////////////////end button example 
             
            pauseButton = new JButton("Pause"); 
            pauseButton.addActionListener(new ActionListener() 
            { 
                public void actionPerformed(ActionEvent actionEvent) 
                { 
                    lineBuilder.setArmed(!lineBuilder.isArmed()); 
                    pauseButton.setText(!lineBuilder.isArmed() ? "Resume" : 

"Pause"); 
                    ((Component) wwd).setCursor(Cursor.getDefaultCursor()); 
                } 
            }); 
            buttonPanel.add(pauseButton); 
            pauseButton.setEnabled(false); 
 
            endButton = new JButton("End"); 
            endButton.addActionListener(new ActionListener() 
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            { 
                public void actionPerformed(ActionEvent actionEvent) 
                { 
                    lineBuilder.setArmed(false); 
                    newButton.setEnabled(true); 
                    pauseButton.setEnabled(false); 
                    pauseButton.setText("Pause"); 
                    endButton.setEnabled(false); 
                    ((Component) wwd).setCursor(Cursor.getDefaultCursor()); 
                } 
            }); 
            buttonPanel.add(endButton); 
            endButton.setEnabled(false); 
 
            JPanel pointPanel = new JPanel(new GridLayout(0, 1, 0, 10)); 
            pointPanel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5)); 
 
            this.pointLabels = new JLabel[20]; 
            for (int i = 0; i < this.pointLabels.length; i++) 
            { 
                this.pointLabels[i] = new JLabel(""); 
                pointPanel.add(this.pointLabels[i]); 
            } 
//////////////////////////THIS IS MY OWN BUTTON 
   newButton = new JButton("Get Sections"); 
   newButton.addActionListener(new ActionListener() 
   { 
    public void actionPerformed(ActionEvent actionEvent) 
    { 
     /**This part of the code is to create a url 

which passes lon,lat variables to a PHP page 
      * through the URL. Those variables are then 

passed into a python script through the command 
      * line. The python script creates a csv file 

which is used in an arcpy script to 
      * create a polyline feature class which is 

used to create a GeoSection kml file. 
      */ 
     String coordUrl = 

CoordsUrl.CoordsUrl(positions); 
     coordUrl = 

"http://digcrust.byu.edu/lonlatvar.php?" + coordUrl; 
     //open up webpage to run the python script 
     try { 
     

 java.awt.Desktop.getDesktop().browse(java.net.URI.create(coordUrl)); 
     } catch (IOException e) { 
      // TODO Auto-generated catch block 
      e.printStackTrace(); 
     } 
     //end opening up webpage 
     System.out.println(coordUrl); //not needed. 

only for debugging purposes. 
    } 
   }); 
   buttonPanel.add(newButton); 
   newButton.setEnabled(true); 
//////////////////////////END OWN BUTTON 
 
            // Put the point panel in a container to prevent scroll panel from 

stretching the vertical spacing. 
            JPanel dummyPanel = new JPanel(new BorderLayout()); 
            dummyPanel.add(pointPanel, BorderLayout.NORTH); 
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            // Put the point panel in a scroll bar. 
            JScrollPane scrollPane = new JScrollPane(dummyPanel); 
            scrollPane.setBorder(BorderFactory.createEmptyBorder(0, 0, 0, 0)); 
            if (size != null) 
                scrollPane.setPreferredSize(size); 
 
            // Add the buttons, scroll bar and inner panel to a titled panel 

that will resize with the main window. 
            JPanel outerPanel = new JPanel(new BorderLayout()); 
            outerPanel.setBorder( 
                new CompoundBorder(BorderFactory.createEmptyBorder(9, 9, 9, 9), 

new TitledBorder("Line"))); 
            outerPanel.setToolTipText("Line control and info"); 
            outerPanel.add(buttonPanel, BorderLayout.NORTH); 
            outerPanel.add(scrollPane, BorderLayout.CENTER); 
            this.add(outerPanel, BorderLayout.CENTER); 
        } 
 
  private void fillPointsPanel() 
        { 
            int i = 0; 
             
            for (Position pos : lineBuilder.getLine().getPositions()) 
            { 
                if (i == this.pointLabels.length) 
                    break; 
 
                String las = String.format("Lat %7.4f\u00B0", 

pos.getLatitude().getDegrees()); 
                String los = String.format("Lon %7.4f\u00B0", 

pos.getLongitude().getDegrees()); 
                pointLabels[i].setText(las + "  " + los); 
                i++; 
            } 
            for (; i < this.pointLabels.length; i++) 
                pointLabels[i++].setText(""); 
        } 
    } 
 
    /** 
     * Marked as deprecated to keep it out of the javadoc. 
     * 
     * @deprecated 
     */ 
    public static class AppFrame extends KMLViewer.AppFrame 
    { 
        public AppFrame() 
        { 
            super(); 
 
            LineBuilder lineBuilder = new LineBuilder(this.getWwd(), null, 

null); 
            this.getContentPane().add(new LinePanel(this.getWwd(), 

lineBuilder), BorderLayout.WEST); 
            this.getContentPane().add(new WebPanel(this.getWwd()), 

BorderLayout.SOUTH); 
            this.pack(); 
        } 
    } 
 
    /** 
     * Marked as deprecated to keep it out of the javadoc. 
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     * 
     * @param args the arguments passed to the program. 
     * @deprecated 
     */ 
    public static void main(String[] args) 
    { 
        //noinspection deprecation 
        KMLViewer.start("World Wind Line Builder", LineBuilder.AppFrame.class); 
    } 
} 

B.1.d  CoordsUrl 
package digcrustApplications; 
 
import gov.nasa.worldwind.geom.Position; 
import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.List; 
 
public class CoordsUrl 
{ 
 public static String CoordsUrl(ArrayList <Position> positions) 
 { 
  String coordinates = ""; 
  String position = null; 
  String deg = null; 
  int comma = -1; 
  for(int i = 0; i < positions.size(); i++) 
  { 
   position = positions.get(i).toString(); 
   System.out.println(position); 
   //position is the array element at index i converted into a 

string 
   position = positions.get(i).toString(); 
   //remove the last character of position ")" 
   position = position.substring(0,position.length()-1); 
   //remove the first character of position "(" 
   position = position.substring(1,position.length()); 
   //find first comma between lat and lon 
   comma = position.indexOf(",",0); 
   //find degree symbol "°" just in front of comma 
   deg = position.substring(comma-1,comma); 
   //replace degree symbol with nothing 
   position = position.replace(deg, ""); 
   //remove spaces from front and back in case they are there 
   position = position.trim(); 
   //remove all spaces inside of string 
   position = position.replace(" ", ""); 
   //split the lat,lon,alt into parts of a list 
   List<String> LatLonAlt = 

Arrays.asList(position.trim().split(",")); 
   //reorder the string to show: "&lon1=lon&lat1=lat" 
   //example: "&lon1=-121.56&lat1=38.22" 
   coordinates = coordinates + "&lon" + i + "=" + 

LatLonAlt.get(1) + "&lat" + i + "=" + LatLonAlt.get(0); 
  } 
  coordinates = coordinates.substring(1,coordinates.length()); 
  //System.out.println(coordinates); //not needed. only for 

debugging purposes 
  return coordinates; 
 } 
} 
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B.1.e  WMSLayerManager 
package digcrustApplications; 
 
import gov.nasa.worldwind.util.Logging; 
import gov.nasa.worldwind.util.WWIO; 
import gov.nasa.worldwindx.examples.WMSLayersPanel; 
 
import javax.swing.*; 
import javax.swing.event.*; 
 
import java.awt.*; 
import java.beans.*; 
import java.io.IOException; 
import java.io.InputStream; 
import java.net.URISyntaxException; 
 
public class WMSLayerManager  
{ 
 protected static final String BROWSER_CONTENT_PATH = "WebsiteTest.html"; 
  
 protected static final String[] servers = new String[] 
         { 
             "http://neowms.sci.gsfc.nasa.gov/wms/wms", 
         }; 
 
     protected static class AppFrame extends LineBuilder.AppFrame 

//changed from ...extends ApplicationTemplate.AppFrame 
     { 
         protected final Dimension wmsPanelSize = new Dimension(400, 600); 
         protected JTabbedPane tabbedPane; 
         protected int previousTabIndex; 
 
         public AppFrame() 
         { 
             this.tabbedPane = new JTabbedPane(); 
 
             this.tabbedPane.add(new JPanel()); 
             this.tabbedPane.setTitleAt(0, "+"); 
             this.tabbedPane.addChangeListener(new ChangeListener() 
             { 
                 public void stateChanged(ChangeEvent changeEvent) 
                 { 
                     if (tabbedPane.getSelectedIndex() != 0) 
                     { 
                         previousTabIndex = tabbedPane.getSelectedIndex(); 
                         return; 
                     } 
 
                     String server = JOptionPane.showInputDialog("Enter 

wms server URL"); 
                     if (server == null || server.length() < 1) 
                     { 
                         tabbedPane.setSelectedIndex(previousTabIndex); 
                         return; 
                     } 
 
                     // Respond by adding a new WMSLayerPanel to the 

tabbed pane. 
                     if (addTab(tabbedPane.getTabCount(), server.trim()) 

!= null) 
                         

tabbedPane.setSelectedIndex(tabbedPane.getTabCount() - 1); 
                 } 
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             }); 
////////////////////////////////TOP - add web content tab 
             InputStream contentStream = 

WWIO.openFileOrResourceStream(BROWSER_CONTENT_PATH, this.getClass()); 
             String htmlString = null; 
             try { 
     htmlString = 

WWIO.readStreamToString(contentStream, null); 
    } catch (IOException e) { 
     // TODO Auto-generated catch block 
     e.printStackTrace(); 
    } 
             JPanel panel = new JPanel(); 
             JEditorPane editorPane = new JEditorPane(); 
             editorPane.setEditable(false); 
             editorPane.setContentType("text/html"); //the "text/html" 

document is part of the project library 
             editorPane.setText(htmlString); 
             panel.add(editorPane); 
             tabbedPane.add(panel); 
///////////////////////////////BOTTOM - add web content tab 
              
             // Create a tab for each server and add it to the tabbed 

panel. 
             for (int i = 0; i < servers.length; i++) 
             { 
              this.addTab(i + 2, servers[i]); // i+1 to place all server 

tabs to the right of the Add Server and Web Help tabs 
             } 
 
             // Display the first server pane by default. 
             

this.tabbedPane.setSelectedIndex(this.tabbedPane.getTabCount() > 0 ? 2 : 0); 
             this.previousTabIndex = this.tabbedPane.getSelectedIndex(); 
 
             // Add the tabbed pane to a frame separate from the world 

window. 
             JFrame controlFrame = new JFrame(); 
             controlFrame.getContentPane().add(tabbedPane); 
             controlFrame.pack(); 
             controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
             controlFrame.setVisible(true); 
         } 
 
         protected WMSLayersPanel addTab(int position, String server) 
         { 
             // Add a server to the tabbed dialog. 
             try 
             { 
                 WMSLayersPanel layersPanel = new 

WMSLayersPanel(AppFrame.this.getWwd(), server, wmsPanelSize); 
                 this.tabbedPane.add(layersPanel, BorderLayout.CENTER); 
                 String title = layersPanel.getServerDisplayString(); 
                 this.tabbedPane.setTitleAt(position, title != null && 

title.length() > 0 ? title : server); 
 
                 // Add a listener to notice wms layer selections and tell 

the layer panel to reflect the new state. 
                 

layersPanel.addPropertyChangeListener("LayersPanelUpdated", new 
PropertyChangeListener() 

                 { 
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                     public void propertyChange(PropertyChangeEvent 
propertyChangeEvent) 

                     { 
                         

AppFrame.this.getLayerPanel().update(AppFrame.this.getWwd()); 
                     } 
                 }); 
 
                 return layersPanel; 
             } 
             catch (URISyntaxException e) 
             { 
                 JOptionPane.showMessageDialog(null, "Server URL is 

invalid", "Invalid Server URL", JOptionPane.ERROR_MESSAGE); 
                 tabbedPane.setSelectedIndex(previousTabIndex); 
                 return null; 
             } 
         } 
     } 
 
     public static void main(String[] args) 
     { 
         KMLViewer.start("World Wind WMS Layers", AppFrame.class); 

//changed from ApplicationTemplate.start... 
     } 
} 

B.2 Applet Code Example 

This section shows the classes used to develop the application used in this research 

project. The names of the subsections that follow indicate the name of the Java file class which 

the code is for. 

 

package applets; 
 
//world wind imports for applet 
import gov.nasa.worldwind.*; 
import gov.nasa.worldwind.avlist.AVKey; 
import gov.nasa.worldwind.awt.*; 
import gov.nasa.worldwind.geom.Angle; 
import gov.nasa.worldwind.geom.Position; 
import gov.nasa.worldwind.layers.*; 
import gov.nasa.worldwind.layers.Earth.*; 
import gov.nasa.worldwind.util.*; 
//java imports for applet 
import javax.swing.*; 
import javax.swing.border.*; 
import java.awt.*; 
import java.awt.event.*; 
//imports from world wind KMLViewer 
import gov.nasa.worldwind.WorldWind; 
import gov.nasa.worldwindx.examples.kml.KMLApplicationController; 
import gov.nasa.worldwindx.examples.util.*; 
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import gov.nasa.worldwind.util.layertree.*; 
import gov.nasa.worldwind.layers.RenderableLayer; 
import gov.nasa.worldwind.ogc.kml.*; 
import gov.nasa.worldwind.ogc.kml.impl.KMLController; 
import gov.nasa.worldwind.view.orbit.BasicOrbitView; 
import gov.nasa.worldwind.view.orbit.OrbitView; 
//imports from java KMLViewer 
import javax.swing.filechooser.*; 
import javax.swing.JFileChooser; 
import netscape.javascript.JSObject; 
import java.io.*; 
import java.net.URL; 
 
public class BasicDemo extends JApplet 
{ 
  /**This adds layers to the layer tree of the applet. 
  *The layers added here are added from the World Wind 
  *source code. 
  */ 
  private BasicDemo.LayerAction[] layers = new BasicDemo.LayerAction[]  
  { 
   //IMAGERY LAYERS 
   new BasicDemo.LayerAction(new BMNGOneImage(), true), 
    new BasicDemo.LayerAction(new BMNGWMSLayer(), true), 
    new BasicDemo.LayerAction(new LandsatI3WMSLayer(), true), 
    new BasicDemo.LayerAction(new MSVirtualEarthLayer(), false), 
    new BasicDemo.LayerAction(new StarsLayer(), true), 
    new BasicDemo.LayerAction(new SkyGradientLayer(), true), 
    new BasicDemo.LayerAction(new OSMMapnikLayer(), false), 
    //DATA LAYERS 
    new BasicDemo.LayerAction(new LatLonGraticuleLayer(), false), 
    new BasicDemo.LayerAction(new NASAWFSPlaceNameLayer(), false), 
    new BasicDemo.LayerAction(new CountryBoundariesLayer(), false), 
    //TOOLS LAYERS 
    new BasicDemo.LayerAction(new ScalebarLayer(), true), 
    new BasicDemo.LayerAction(new WorldMapLayer(), true), 
    new BasicDemo.LayerAction(new CrosshairLayer(), false), 
    new BasicDemo.LayerAction(new CompassLayer(), true), 
  }; 
   
  //This object represents the source of the kml file being loaded 
  //by the addKMLfromURL() method. 
  private Object kmlSource1; 
 
  public void init() 
  { 
/////////////////////////TOP - Menu bar  
   final JFileChooser fileChooser = new JFileChooser(); 
      fileChooser.setMultiSelectionEnabled(true); 
      fileChooser.addChoosableFileFilter(new FileNameExtensionFilter("KML/KMZ File", "kml", "kmz")); 
       
   JMenuBar menubar = new JMenuBar(); 
  JMenu menuAddKML = new JMenu("Add KML"); 
   
  //TOP - Example of how to make a menu item for loading a specific file from a URL 
  /*JMenuItem utFile = new JMenuItem(new AbstractAction("Utah Outline") 
  { 
   public void actionPerformed(ActionEvent actionEvent) 
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   { 
    try 
    { 
     String status = 

"http://digcrust.byu.edu/digcrustPython/kml/UTOutline.kml"; 
     //new WorkerThread(status.trim(), appFrame).start(); 
     addKMLfromURL(status); 
    } 
    catch (Exception e) 
    { 
     e.printStackTrace(); 
    } 
   } 
  }); 
  menuAddKML.add(utFile);*/ 
  //BOTTOM - UTAH outline file 
  /**This is the menu item which allows the user to add a KML 
  *or KMZ to the applet from a URL directly. 
  */ 
  //TOP - addURL 
  JMenuItem addURL = new JMenuItem(new AbstractAction("KML URL") 
  { 
    public void actionPerformed(ActionEvent actionEvent) 
          { 
              try 
              { 
               //http://digcrust.groups.et.byu.net/kml/myUTPointsClamp.kmz 
                  String status = JOptionPane.showInputDialog(appFrame, "URL"); 
                  if (!WWUtil.isEmpty(status)) 
                  { 
                      //new WorkerThread(status.trim(), appFrame).start(); 
                   addKMLfromURL(status); 
                  } 
              } 
              catch (Exception e) 
              { 
                  e.printStackTrace(); 
              } 
          } 
  }); 
  menuAddKML.add(addURL); 
   
  //the menu items, menus and menu bar all need 
  // to be ADDED to something! 
  menubar.add(menuAddKML); 
  menuAddKML.add(addURL); 
  //menuAddKML.add(utFile); //this adds the menu item to load specific file 
 
  setJMenuBar(menubar); 
//////////////////////////BOTTOM - Menu bar 
 
      try 
      { 
          BasicDemo demo = new BasicDemo(); 
          appFrame = new BasicDemo.AppFrame(demo.layers, getContentPane()); 
/////////////////////////////////TOP - Load the Virginia geo-sections in before starting 
        /*String status2 = "http://digcrust.groups.et.byu.net/kml/VirginiaCrossSections01.kml"; 
    addKMLfromURL(status2);*/ 
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////////////////////////////////BOTTOM - Load the Virginia geo-sections in before starting 
      } 
 
 
      catch (Exception e) 
      { 
          e.printStackTrace(); 
      } 
  } 
  /**This creates the frame or window for the applet and  
  *adds in the container for the layers menu. 
  */ 
  public static class AppFrame  
  { 
   protected LayerTree layerTree; 
   protected RenderableLayer hiddenLayer; 
      protected HotSpotController hotSpotController; 
      protected KMLApplicationController kmlAppController; 
      protected BalloonController balloonController; 
       
      public final static WorldWindowGLCanvas wwd = new WorldWindowGLCanvas(); 
       
      public AppFrame(BasicDemo.LayerAction[] layers, Container c) 
      { 
       LayerList layerList = new LayerList(); 
 
          try 
          { 
              JPanel mainPanel = new JPanel(); 
              mainPanel.setLayout(new BorderLayout()); 
              wwd.setPreferredSize(new Dimension(800, 600)); 
              mainPanel.add(wwd, BorderLayout.CENTER); 
 
              StatusBar statusBar = new StatusBar(); 
              statusBar.setEventSource(wwd); 
              mainPanel.add(statusBar, BorderLayout.PAGE_END); 
              c.add(mainPanel, BorderLayout.CENTER); 
 
              JPanel eastContainer = new JPanel(new BorderLayout()); 
              { 
                  JPanel eastPanel = new JPanel(new GridLayout(0, 1, 0, 10)); 
                  eastPanel.setBorder(BorderFactory.createEmptyBorder(9, 9, 9, 9)); 
                  { 
                      JPanel layersPanel = new JPanel(new GridLayout(0, 1, 0, 15)); 
                      layersPanel.setBorder(new TitledBorder("Layers")); 
                      for (BasicDemo.LayerAction action : layers) 
                      { 
                          JCheckBox jcb = new JCheckBox(action); 
                          jcb.setSelected(action.selected); 
                          layersPanel.add(jcb); 
                          layerList.add(action.layer); 
 
                          if (action.layer instanceof TiledImageLayer) 
                              ((TiledImageLayer) action.layer).setDrawTileBoundaries(false); 
 
                          if (action.layer instanceof LandsatI3WMSLayer) 
                              ((TiledImageLayer) action.layer).setDrawBoundingVolumes(false); 
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                          if (action.layer instanceof USGSDigitalOrtho) 
                              ((TiledImageLayer) action.layer).setDrawTileIDs(false); 
                      } 
                      eastPanel.add(layersPanel); 
                      eastContainer.add(eastPanel, BorderLayout.NORTH); 
                  } 
              } 
 
              c.add(eastContainer, BorderLayout.EAST); 
 
              Model m = (Model) WorldWind.createConfigurationComponent(AVKey.MODEL_CLASS_NAME); 
              m.setLayers(layerList); 
              m.setShowWireframeExterior(false); 
              m.setShowWireframeInterior(false); 
              m.setShowTessellationBoundingVolumes(false); 
              wwd.setModel(m); 
          } 
          catch (Exception e) 
          { 
              e.printStackTrace(); 
          } 
      } 
 
 /** 
 * Adds the specified <code>kmlRoot</code> to this app frame's <code>WorldWindow</code> as a new 
 * <code>Layer</code>, and adds a new <code>KMLLayerTreeNode</code> for the <code>kmlRoot</code>  
*to this app frame's on-screen layer tree. 
 * <p/> 
 * This expects the <code>kmlRoot</code>'s <code>AVKey.DISPLAY_NAME</code> field to contain a display 

name 
 * suitable for use as a layer name. 
 * 
 * @param kmlRoot the KMLRoot to add a new layer for. 
 */ 
 protected void addKMLLayer(KMLRoot kmlRoot) 
 { 
  // Create a KMLController to adapt the KMLRoot to the World Wind renderable interface. 
  KMLController kmlController = new KMLController(kmlRoot); 
    
  // Adds a new layer containing the KMLRoot to the end of the WorldWindow's layer list. This 
  // retrieves the layer name from the KMLRoot's DISPLAY_NAME field. 
  RenderableLayer layer = new RenderableLayer(); 
  layer.setName((String) kmlRoot.getField(AVKey.DISPLAY_NAME)); 
  layer.addRenderable(kmlController); 
  wwd.getModel().getLayers().add(layer); 
} 
  } 
 
  protected static String formName(Object kmlSource, KMLRoot kmlRoot) 
  { 
      KMLAbstractFeature rootFeature = kmlRoot.getFeature(); 
 
      if (rootFeature != null && !WWUtil.isEmpty(rootFeature.getName())) 
          return rootFeature.getName(); 
 
      if (kmlSource instanceof File) 
          return ((File) kmlSource).getName(); 
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      if (kmlSource instanceof URL) 
          return ((URL) kmlSource).getPath(); 
 
      if (kmlSource instanceof String && WWIO.makeURL((String) kmlSource) != null) 
          return WWIO.makeURL((String) kmlSource).getPath(); 
 
      return "KML Layer"; 
  } 
 
  static class LayerAction extends AbstractAction 
  { 
      private Layer layer; 
      private boolean selected; 
 
      public LayerAction(Layer layer, boolean selected) 
      { 
          super(layer.getName()); 
          this.layer = layer; 
          this.selected = selected; 
          this.layer.setEnabled(this.selected); 
      } 
 
      public void actionPerformed(ActionEvent actionEvent) 
      { 
          if (((JCheckBox) actionEvent.getSource()).isSelected()) 
              this.layer.setEnabled(true); 
          else 
              this.layer.setEnabled(false); 
 
          appFrame.wwd.repaint(); 
      } 
  } 
 
  static 
  { 
      if (Configuration.isMacOS()) 
      { 
          System.setProperty("apple.laf.useScreenMenuBar", "true"); 
          System.setProperty("com.apple.mrj.application.apple.menu.about.name", "World Wind Basic Demo"); 
          System.setProperty("com.apple.mrj.application.growbox.intrudes", "false"); 
      } 
  } 
////////////////////////////////Top - add stuff for API 
  public void start() 
  { 
      // Call javascript appletStart() 
      try 
      { 
          JSObject win = JSObject.getWindow(this); 
          win.call("appletStart", null); 
      } 
      catch (Exception ignore) 
      { 
      } 
  } 
 
  public void stop() 
  { 
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      // Call javascript appletStop() 
      try 
      { 
          JSObject win = JSObject.getWindow(this); 
          win.call("appletStop", null); 
      } 
      catch (Exception ignore) 
      { 
      } 
 
      // Shut down World Wind when the browser stops this Applet. 
      WorldWind.shutDown(); 
  } 
 
  /** 
   * Adds a layer to WW current layerlist, before a named layer. Target name can be a part of the layer name 
   * 
   * @param wwd        the <code>WorldWindow</code> reference. 
   * @param layer      the layer to be added. 
   * @param targetName the partial layer name to be matched - case sensitive. 
   */ 
  public static void insertBeforeLayerName(WorldWindow wwd, Layer layer, String targetName) 
  { 
      // Insert the layer into the layer list just before the target layer. 
      LayerList layers = wwd.getModel().getLayers(); 
      int targetPosition = layers.size() - 1; 
      for (Layer l : layers) 
      { 
          if (l.getName().indexOf(targetName) != -1) 
          { 
              targetPosition = layers.indexOf(l); 
              break; 
          } 
      } 
      layers.add(targetPosition, layer); 
  } 
 
  /** 
   * Move the current view position 
   * 
   * @param lat the target latitude in decimal degrees 
   * @param lon the target longitude in decimal degrees 
   */ 
  public void gotoLatLon(double lat, double lon) 
  { 
      this.gotoLatLon(lat, lon, Double.NaN, 0, 0); 
  } 
 
  /** 
   * Move the current view position, zoom, heading and pitch 
   * 
   * @param lat     the target latitude in decimal degrees 
   * @param lon     the target longitude in decimal degrees 
   * @param zoom    the target eye distance in meters 
   * @param heading the target heading in decimal degrees 
   * @param pitch   the target pitch in decimal degrees 
   */ 
  public void gotoLatLon(double lat, double lon, double zoom, double heading, double pitch) 
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  { 
//////////BasicOrbitView view = (BasicOrbitView) this.wwd.getView(); 
   BasicOrbitView view = (BasicOrbitView) AppFrame.wwd.getView(); 
      if (!Double.isNaN(lat) || !Double.isNaN(lon) || !Double.isNaN(zoom)) 
      { 
          lat = Double.isNaN(lat) ? view.getCenterPosition().getLatitude().degrees : lat; 
          lon = Double.isNaN(lon) ? view.getCenterPosition().getLongitude().degrees : lon; 
          zoom = Double.isNaN(zoom) ? view.getZoom() : zoom; 
          heading = Double.isNaN(heading) ? view.getHeading().degrees : heading; 
          pitch = Double.isNaN(pitch) ? view.getPitch().degrees : pitch; 
          view.addPanToAnimator(Position.fromDegrees(lat, lon, 0), 
          Angle.fromDegrees(heading), Angle.fromDegrees(pitch), zoom, true); 
      } 
  } 
   
  /** 
   * test out this method to see if it works in the applet when 
   * called from javascript 
   */ 
  public void getMessage() 
  { 
   String msg = "You need a message!"; 
   this.getMessage(); 
  } 
   
  public void getMessage(String msg) 
  { 
   JOptionPane.showMessageDialog(null, "MESSAGE: " + msg); 
  } 
   
   
  /** 
   * Set the current view heading and pitch 
   * 
   * @param heading the target heading in decimal degrees 
   * @param pitch   the target pitch in decimal degrees 
   */ 
  public void setHeadingAndPitch(double heading, double pitch) 
  { 
      BasicOrbitView view = (BasicOrbitView) AppFrame.wwd.getView(); 
      if (!Double.isNaN(heading) || !Double.isNaN(pitch)) 
      { 
          heading = Double.isNaN(heading) ? view.getHeading().degrees : heading; 
          pitch = Double.isNaN(pitch) ? view.getPitch().degrees : pitch; 
 
          view.addHeadingPitchAnimator( 
              view.getHeading(), Angle.fromDegrees(heading), view.getPitch(), Angle.fromDegrees(pitch)); 
      } 
  } 
 
  /** 
   * Set the current view zoom 
   * 
   * @param zoom the target eye distance in meters 
   */ 
  public void setZoom(double zoom) 
  { 
      BasicOrbitView view = (BasicOrbitView) AppFrame.wwd.getView(); 
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      if (!Double.isNaN(zoom)) 
      { 
          view.addZoomAnimator(view.getZoom(), zoom); 
      } 
  } 
 
  /** 
   * Get the WorldWindowGLCanvas 
   * 
   * @return the current WorldWindowGLCanvas 
   */ 
  public WorldWindowGLCanvas getWW() 
  { 
      return AppFrame.wwd; 
  } 
   
  /** 
   * This loads kml documents from a URL 
   * @return  
   */ 
  public void addKMLfromURL(String kmlSource1) 
  { 
   this.kmlSource1 = kmlSource1; 
   AppFrame appFrame1 = BasicDemo.appFrame; 
   try  
   { 
    KMLRoot kmlRoot = null; 
    int end = kmlSource1.length(); 
    int start = end - 3; 
    String ext = kmlSource1.substring(start, end); 
    CharSequence ext2 = kmlSource1.subSequence(start, end); 
    CharSequence kml = "kml"; 
    System.out.println(); 
    System.out.println(ext); 
    if(ext.equals("kml")) 
    { 
     URL url = WWIO.makeURL(kmlSource1); 
     kmlRoot = KMLRoot.createAndParse(url); 
    } 
    else 
    { 
   kmlRoot = KMLRoot.createAndParse(this.kmlSource1); 
    } 
    kmlRoot.setField(AVKey.DISPLAY_NAME, formName(this.kmlSource1, kmlRoot)); 
    final KMLRoot finalKMLRoot = kmlRoot; 
    appFrame1.addKMLLayer(finalKMLRoot); 
    } 
    catch (Exception e) 
    { 
   e.printStackTrace(); 
   JOptionPane.showMessageDialog(null, "Your file did not load properly. Please make 

sure your file has an extension of '.kml' or '.kmz' and try again."); //message error 1 
   JOptionPane.showMessageDialog(null, e.toString()); //message error 2 
    } 
 } 
 /** 
   * Get the current OrbitView 
   * 
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   * @return the current OrbitView 
   */ 
  public OrbitView getOrbitView() 
  { 
      if (AppFrame.wwd.getView() instanceof OrbitView) 
          return (OrbitView) AppFrame.wwd.getView(); 
      return null; 
  } 
 
  /** 
   * Get a reference to a layer with part of its name 
   * 
   * @param layerName part of the layer name to match. 
   * 
   * @return the corresponding layer or null if not found. 
   */ 
  public Layer getLayerByName(String layerName) 
  { 
      for (Layer layer : AppFrame.wwd.getModel().getLayers()) 
      { 
          if (layer.getName().indexOf(layerName) != -1) 
              return layer; 
      } 
      return null; 
  } 
 
///////////////////////////////Bottom - add stuff for API 
  public static BasicDemo.AppFrame appFrame; 
 
} 
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APPENDIX C Putting Applications and Applets Online 

The following example command line prompts in this appendix demonstrate how to 

create a keystore called “WWkeystore” with the alias “mykey” for a JAR file with the file 

location and name of “C:\JARfiles\WWApp.jar” which can represent the JAR file exported for 

an application or an applet. 

C.1 Creating a Keystore in the Command Line 

If necessary direct the command line to the file location:  cd C:\JARfiles 

Create the keystore:  keytool –genkey –keystore WWkeystore –alias mykey 

Enter a password then enter it again and continue to input other information as prompted. 

The last prompt will ask for another password for the particular alias you have created. You may 

hit “Enter” to indicate that it will be the same as the password previously entered or you may 

enter a new password. 

Self-certify your keystore:  keytool –selfcert –keystore WWkeystore –alias mykey 

Then enter your password for your keystore. Once your keystore is generated you can use 

it to sign multiple JAR files without creating a new keystore. 

Your command line window should be similar to that shown below in Figure 10. 
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Figure 10:  Example of command line inputs and outputs after creating and self-certifying a keystore 

 

C.2 Signing a JAR file in the Command Line 

If necessary direct the command line to the file location:  cd C:\JARfiles 

Sign your JAR file with your keystore:  jarsigner –keystore WWkeystore WWApp.jar 

mykey 

Enter your password for your keystore again. When finished you should receive a 

message that the signer certificate will expire within six months. Multiple JAR files can be 

signed this way with the same keystore. Your command line window should be similar to the one 

shown in Figure 11 below. 
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Figure 11:  Example of command line window inputs and outupts after signing a JAR file 

 

C.3 Example of JNLP File for Application 
<?xml version="1.0" encoding="utf-8"?> 
<jnlp spec="1.0" 
   <!-- Change the codebase to match the URL file location of this JNLP --> 
codebase="http://digcrust.byu.edu/webstartFiles/" 
   <!-- Change the href here to match the JNLP name of this file. --> 
       href="FinalApplication.jnlp"> 
 <!--  

Change the content in the information to match your Application's 
  description. This does not affect the workability of this code. It 
  is only meta data. 
 --> 
    <information> 
        <title>World Wind Java Application</title> 
        <vendor>Brigham Young University</vendor> 
        <homepage href="http://digcrust.byu.edu/index.html"/> 
        <description>World Wind Java Application</description> 
        <description kind="short">World Wind Java Application</description> 
        <offline-allowed/> 
    </information> 
    <security> 
        <all-permissions/> 
    </security> 
 
    <resources> 
        <j2se href="http://java.sun.com/products/autodl/j2se" version="1.6+" initial-heap-size="512m" 
              max-heap-size="512m"/> 
        <property name="sun.java2d.noddraw" value="true"/> 
        <!-- Change the href here to match the JAR being referenced --> 
        <jar href="FinalApplication.jar" main="true"/> 
        <extension name="worldwind" href="http://worldwind.arc.nasa.gov/java/1.5.0/webstart/worldwind.jnlp"/> 
        <extension name="worldwindx" href="http://worldwind.arc.nasa.gov/java/2.0.0/webstart/worldwindx.jnlp"/> 
        <extension name="gdal" href="http://worldwind.arc.nasa.gov/java/2.0.0/webstart/gdal.jnlp"/> 
    </resources> 
    <!-- Change the main-class here to match your application's package.class name--> 
    <application-desc main-class="digcrustApplications.WMSLayerManager"/> 
</jnlp> 
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C.4 Launching Application Through Web Start in HTML 
<script src=http://www.java.com/js/deploy.js></script> 
<script type=”text/javascript”></script> 
<script> 
 //this line gets the URL location of this HTML page 
 var dir = location.href.substring(0,location.href.lastIndexOf(‘/’)+1); 
 //this line appends the actual file location of the JNLP 
 var url = dir + “webstartFiles/FinalApplication.jnlp”; 
 //this line deploys the applet using JRE 1.6+ 
 deployJava.createWebStartLaunchButton(url, ‘1.6.0’); 
</script> 

C.5 Example of JNLP File for Applet 
<?xml version="1.0" encoding="utf-8"?> 
<!-- 
  ~ Copyright (C) 2013 United States Government as represented by the Administrator of the 
  ~ National Aeronautics and Space Administration. 
  ~ All Rights Reserved. 
--> 
 
<!-- Change the href here to match the JNLP name of this file. --> 
<jnlp href="BasicDemo9.jnlp"> 
 
    <!-- 
        Change the content in the information to match your Application's 
        description. This does not affect the workability of this code. It 
        is only meta data. 
    --> 
    <information> 
        <title>Digital Crust World Wind Applet</title> 
        <vendor>Brigham Young University</vendor> 
        <homepage href="http://digcrust.byu.edu/"/> 
        <description>Subsurface Viewing Globe</description> 
        <description kind="short">This is a prototype for the Digital Crust, a virtual globe viewing web site for 

subsurface data.</description> 
        <offline-allowed/> 
    </information> 
 
    <security> 
        <all-permissions/> 
    </security> 
 
    <resources> 
        <java version="1.6+" max-heap-size="512m"/> 
        <!-- Change the href here to match the JAR being referenced. --> 
        <jar href="BasicDemo9.jar" main="true"/> 
        <extension name="worldwind" href="http://worldwind.arc.nasa.gov/java/2.0.0/webstart/worldwind.jnlp"/> 
        <extension name="worldwindx" href="http://worldwind.arc.nasa.gov/java/2.0.0/webstart/worldwindx.jnlp"/> 
        <extension name="gdal" href="http://worldwind.arc.nasa.gov/java/2.0.0/webstart/gdal.jnlp"/> 
    </resources> 
  
    <!-- Change the main-class here to match your applet's package.class name. --> 
    <applet-desc main-class="worldwinddemo.BasicDemo" 
                 name="Layers Demo" 
                 width="800" height="600"> 
        <param name="separate_jvm" value="true"/> 
    </applet-desc> 
 
</jnlp> 
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C.6 Launching Applet Through Web Start in HTML 
<div id = “map3d” style=”height: 760px; width: 1000px;” onmouseover=”noscrolling()” onmouseout=”scrolling()”> 

<script src=http://www.java.com/js/deployJava.js></script> 
<script> 
 var attributes = {id:’wwjApplet’, mayscript:’true’, width:’100%’, height:’100%’}; 
 var parameters = [jnlp_href:’webstartFiles/BasicApplet9.jnlp’}; 
 deployJava.runApplet(attributes, parameters, ‘1.6’); //runApplet automatically looks for JRE 1.6+ 
</script> 

</div> 
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APPENDIX D Create a Custom Toolbox with AHGW Tools in ArcGIS 

The following steps in this appendix describe how to create a custom toolbox in Arc 

Catalog and add AHGW tools into it for use in Python scripts. This is done using Arc Catalog 

within the Arc Desktop environment of Arc Map or Arc Scene even though it may be done in 

Arc Catalog directly. 

1. Be sure that both Arc Desktop and AHGW have been installed and Arc Desktop has 
been licensed correctly and AHGW tools have been added and registered correctly. 

2. Open a new or existing map file for Arc Map or Arc Scene, Arc Scene was often used in 
this project because of the 3D visualization.  

3. Within either of these Arc Desktop environments, open the Arc Catalog window by 
clicking the Catalog Window icon. 

4. Rightclick on the “Home” folder or any folder you would like to create the toolbox 
inside of then select New>>Toolbox. 

5. Type a name for the toolbox and press “Enter” on the keyboard. Then rightclick on the 
new toolbox and select “Properties…” Under the “General” tab enter an alias for the 
toolbox in the textbox labeled “Alias.” This alias will be used to refer to the toolbox in 
the Python script so a shorter is recommended. Click the “OK” button to close the 
properties window. 

6. Rightclick again on the new toolbox and select Add>>Tool… to open the “Add Tool” 
window. In this window click the ‘+’ signs to expand the toolboxes and the ‘-‘ signs to 
compress them. Navigate to the tools or toolboxes you want to add and check the empty 
box next to them. More than one tool or toolbox may be selected. Select the “OK” button 
when finshed to close the window. 

a. Remember that all of the tools and toolboxes selected will be imported with your 
custom toolbox into the python script so to keep script run times down only 
select what you need. Also, avoid selecting entire toolboxes unless you will be 
using everything inside of them. 
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APPENDIX E Cloud-Based Processing 

The code behind the geoprocessing methods including JavaScript, PHP, HTML, and 

Python are provided here. 

E.1 Converting Shapefile 

The subsections included here contain examples of code used for the geoprocessing 

routine. The code provided has been adjusted or minimized to show only what is most pertinent 

to the geoprocessing routine. The section title naming convention includes the coding language 

used followed by a ‘-’ then the file name followed by a description in parentheses. The file 

names are included make reading the code easier because file names are integrated into the code. 

E.1.a HTML/JavaScript – index.html (homepage of website) 
 <!--This is the form to upload the shapefile data in the HTML page. --> 
<form enctype=”multipart/form-data” method=”POST” target=”blank” action=”upload_shp.php” id=”uploadForm”> 
 <input type=”file” name=”upload[]” multiple=”multiple”><br /> 
 <input type=”text” name=”user” id=”user” value=”tempuser”><br /> 
 Clamp to ground<input type=”checkbox” name=”clamp” id=”clamp” /></a> 
 <input type=”submit” name=”Submit” value=”Submit” onclick=”setDate()”><br /> 
</form> 
 
<!-- This is the Javascript initiated by the “Submit” button --> 
 
<!-- Reference Javascript libraries for jquery and custom functions. --> 
<script language="Javascript" type="text/javascript" src="jquery-1.10.2.js"></script> 
<script language=”javascript” type=”text/javascript” src=”MainJavascript.js”></script> 
<script> 
 
//global variables 
var kmlrul; 
var kmltime; 
var oldTime =0; 
var date; 
 
function setDate() 
{ 
 //get a fresh time stamp every time the “Submit” button is pressed 
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 date = new Date(); 
 checkText(); 
} 
 
function checkText() 
{ 
 //these two variables are for checking the run time of the Python code 
 var count = date.getTime(); 
 var countDif = 0; 
 //the Python code creates a text file with a timestamp and a URL pointing to  
 //the KML generated. This text file is named with the username in the text box element 
 //referenced here. 
 var user = document.getElementById(‘user’).value; 
 //this references a PHP page which checks the text file URL and time stamp 
 var url = http://digcrust.byu.edu/checkText.php?user= + user; 
 
 //This begins the jquery code which runs the PHP page to check the text file 
 //every 2 second for up to 2 minutes (120000 milliseconds) 
 $.getJSON(url, function(result) 
 { 
  var results = result[0].directory; 
  var resultsArr = results.split(“,”); 
  var url = resultsArr[0]; 
  var newTime = resultsArr[1]; 
   
  //oldTime is the time stamp from the last text file generated by the Python code 
  //if the user has already uploaded shapefile data in this session. newTime is the  
  //time stamp in the current text file. If a new text file has not been made then the 
  //two variables will be equal. If a new text file has been made they will not be equal. 
 
  if (oldTime == 0) 
  { 
   oldTime = newTime; 
  } 
  if (newTime != oldTime) 
  { 
   oldTime = newTime; 
   //set runtime of Python code to over 2 minutes to exit the loop of  
   //checking the PHP page to check the text file 
   countDif = 120001; 
   abortTimer(); 
   var msg = confirm(“Your shapefile has been converted….load it now?”); 
   if(msg == true) 
   { 
    //this references the applet and a Java method inside of it 
    //see section 10.2 of this thesis. 
    getWWApplet().addKMLfromURL(url); 
   } 
  } 
  else if (countdif < 120000) 
  { 
   //use countDif to check the runtime of the Python script 
   //run again in 2 seconds if less than 2 minutes 
   var date2 = new Date(); 
   var count2 = date2.getTime(); 
   countDif = count2 - count; 
   tid = setTimeout(checkText, 2000); 
  } 
 }); 
} 
 
function abortTimer() 
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{ 
 clearTimeout(tid); 
} 
 
</script> 
 

E.1.b  JavaScript - MainJavascript.js (JavaScript page referenced in the web pages) 
var theApplet = null; 
//this function points to the applet so that its methods can be accessed 
function getWWJApplet() 
{ 
 if (theApplet == null) 
 { 
  theApplet = document.getElementById(‘wwjApplet’); 
 } 
 return theApplet; 
} 

E.1.c PHP - checkText.php (run by checkText() function in JavaScript) 
<?php 
 header(“Content-Type: application/json”); 
 
 //The user name is taken from the HTML form text box in JavaScript and passed to this PHP 
 //page through the URL. The $_GET method reads it from the URL. 
 $user = $_GET[‘user’]; 
 
 //get one line from the text file 
 $directory = file_get_contents(‘http://digcrust.byu.edu/userDirectories/’ . $user . ‘.txt’); 
 
 //echo this one line which contains the URL to the KML and a time stamp separated by a comma. 
 //This echo is passed into an array which is then read by the JavaScript and passed into the “results” variable. 
 echo json_encode(array(array(“directory”=>$directory))); 
?> 

E.1.d  PHP - upload_shp.php (first visible PHP page with loading gif) 
<html> 
 <!-- this gif was downloaded from http://preloaders.net/en/search/windows%208 --> 
 <body onload=”MM_preloadImages(‘loaderwin8white.gif’)”> 
 <div id=”loadcontainer”> 
  <div id=”loadcontent”> 
   <img src = “loaderwin8white.gif” width=”128” height = “128” alt=”loading circle”/> 
  </div> 
  <div id=”content” style=”position: relative; top: 250px; margin-left: auto; margin-right: auto”> 
<!-- This is the beginning of the “content” div tag ----------------------------------------------------------------------------------> 

<!-- NOW BEGIN PHP CONTENT WITHIN THIS DIV TAG --> 
<?php 
 $accept = array(“shp”,“shx”,”dbf”,”prj”,”sbn”,”sbx”,”fbn”,”ain”,”aih”,”ixs”,”mxs”,”atx”,”xml”,”cpg”); 
 $a = 0; 
 $user = $_POST[‘user’]; 
 $args = null; 
 $clamp = $_POST[‘clamp’]; 
 
 echo “Your files have been uploaded. Username is <b>” . $user . “</b><br>”; 
  
 for ($i=0; $i < count($_FILES[“upload”][“name”][$i]); $i++) 
 { 
  $ext = end(explode(“.”, $_FILES[“upload”][“name”][$i])); 
  echo “<br>File extension:&nbsp:” . $ext; 
  //check file type 
  if ($_FILES[“upload”][“size”][$i] < 999999 and in_array($ext, $accept)) 
  { 
   if ($_FILES[“upload”][“error”][$i] > 0) 
   { 
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    echo “Error: “ . $_FILES[“upload”][“error”][$i] . “<br>”; 
   } 
   else //uploads the file 
   { 
    //look for .xml files and only accept if extension is .shp.xml 
    if ($ext == “xml” and substr($_FILES[‘upload’][‘name’][$i], -8) != 

“.shp.xml”) 
    { 
     echo “Your .xml file must have the subextension .shp<br>”; 
    } 
    else 
    { 
         //Get the temporary file path to upload files to 
         $tmpFilePath = $_FILES[‘upload’][‘tmp_name’][$i]; 
         //make sure we have a temporary filepath 
         if ($tmpFilePath != “”) 
         { 
          //Set up new file path 
          $newFilePath = “C:/Conversions/uploads/” . 

$_FILES[‘upload’][‘name’][$i]; 
          //Upload the file into the temporary directory 
          move_uploaded_file($tmpFilePath, $newFilePath); 
          //create $args variable for the Python code using the file with the  
          //’.shp’ extension. 
          if ($ext == “shp”) 
          { 
      $shpFile = $_FILES[‘upoload’][‘name’][$i]; 
      $name = substr($shpFile,0,strlen($shpFile)-4); 
      $args = $user . “ “ . $newFilePath . “ “ . $name; 
          } 
     } 
    } 
   } 
  } 
 else 
 { 
  echo “<br>INVALID FILE”; 
 } 
} 
//set variable for clamped to ground in Python arguments 
if ($clamp == “on”) 
{ 
 $args = $args . “ 1”; 
} 
else 
{ 
 $args = $args . “ 0”; 
} 
//check to make sure that at least three files have been uploaded 
if (count($_FILES[‘upload’][‘name’]) > 2) 
{ 
 $convert = true; 
} 
?> 
  <!-- THIS ENDS THE PHP CODE IN THIS DIV TAG --> 
  <!--  

Navigate to the next PHP page using JavaScript so that the gif loaded by JavaScript will load 
before 

the “window.location.replace()” function is run. Also, wait one second before navigating away just 
to make sure that all the JavaScript has loaded. 

--> 
  <script type = “text/javascript”> 
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  setTimeout(function() 
       { 
   var yes = <?php echo $convert;?>; 
   if (yes == 1) 
   { 
        var arguments = <?php echo “\”” . $args . “\””;?>; 
        window.location.replace(‘http://digcrust.byu.edu/SaveToLyrToKMZ.php?args=’ + 

arguments); 
   } 
       }, 1000 //waits one second before executing function in ‘setTimeout’ 
  ); 
  </script> 
 
  </div><!-- This is the beginning of the “content” div tag ---------------------------------------------------

-------------> 
</div> 
    
</html> 
 

E.1.e  PHP - SaveToLyrToKMZ.php (second visible  PHP page) 
<html>  
<div id="content" style="width:600px; margin-left: auto; margin-right: auto; position:relative; top:50px"> 
 <?php 
      //get variables from the url 
      $args = $_GET['args']; 
 
      //set maximum time for Python script be allowed to run  
      ini_set('max_execution_time', 300); //300 seconds = 5 minutes 
      ini_set('safe_mode',1); 
 
      //create an array which will be filled by the command line & Python print statements 
      $messages = array(); 
      echo "running python script...<br />"; 
      $pythonScript = "C:\Python26\ArcGIS10.0\python.exe C:\Conversions\SaveToKMZ10.py " . $args; 
 
      //This is the line that actually executes the python script 
      exec($pythonScript, $messages); 
 
      //use the line below to show all print statements instead of using while loop below 
      //echo implode("<br />", $messages); 
 
      $j = 5; 
 
      //look for the text “finished” in the last array location of the $messages array to confirm that  
      //the Python script completed correctly 
      if (end($messages) == "finished") 
      { 
  while ($j>1) 
  { 
   echo "<br />" . $messages[count($messages)-$j]; 
   $j--; 
  } 
 
  //echo the download link from the array (second to last print statement from Python) 
  $link = $messages[count($messages)-2]; 
  echo '<br /><br /><a href="' . $link . '">Click here to download your KML.</a>'; 
      } 
 
      else  
      { 
  echo "<br />We are sorry but something went wrong. Please try again.<br />"; 
      } 
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 ?> 
 </div> 
</html> 
 

E.1.f  Python - SaveToLyrToKMZ.py (conversion process for applet) 
# -*- coding: utf-8 -*- 
# --------------------------------------------------------------------------- 
# SaveToLyrToKMZ.py 
# Created on: 2013-08-07 11:47:57.00000 
# Description: Accepts arguments for shapfile data and converts it to 
#     KMZ using arcpy library then unzips to KML 
# --------------------------------------------------------------------------- 
#Import time module 
import time 
import zipfile 
#get a time stamp 
start = time.time() 
# 
#get system type 
import sys 
# 
#Import arcpy module 
import arcpy 
import os 
arcpy.env.overwriteOutput = True 
# 
#Get arguments from command line in the form: 
args = sys.argv[1:] 
username = args[0] 
shapePath = args[1] 
shapeName = args[2] 
 
if str(args[3]) == "0": 
    clamp = "ABSOLUTE" 
else: 
    clamp = "CLAMPED_TO_GROUND" 
# 
#set up workspace 
arcpy.env.workspace = "C:\\Conversions" 
workspace = arcpy.env.workspace 
###################################### 

# 

# Local variables: 
Uploaded = shapePath 
LayerFile = workspace + "\\layers\\" + shapeName + "Lyr.lyr" 
KMZ = workspace + "\\kmz\\" + shapeName + ".kmz" 
kml = "C:\\inetpub\\wwwroot\\kml" 
mxd = arcpy.mapping.MapDocument(workspace + "\\Conversions.mxd") 
df = arcpy.mapping.ListDataFrames(mxd)[0] 
newLayer = arcpy.mapping.Layer(Uploaded) 
# 
#add uploaded file 'newLayer' to dataframe 'df' in map 'mxd' 
arcpy.mapping.AddLayer(df,newLayer) 
countLyrs = arcpy.mapping.ListLayers(mxd,"*",df) 
for l in countLyrs: 
    count = count + 1 
myLyr = countLyrs[count-1] 
# 
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# Process: Save To Layer File 
arcpy.SaveToLayerFile_management(myLyr, LayerFile, "", "CURRENT") 
# 
# Process: Layer To KML 
##arcpy.LayerToKML_conversion(LayerFile, KMZ, "1", "false", "DEFAULT", "1024", "96", clamp) #this is the old 

one for 10.1 & 10.2 
arcpy.LayerToKML_conversion(LayerFile, KMZ, "1", "false", "DEFAULT", "1024", "96")# 
###################################### 
# 
#now get the kmz to unzip and be renamed 
# 
###################################### 
#unzip file 
zipTest = zipfile.ZipFile(KMZ).extractall(kml) 
# 
#rename unzipped file 
# 
#see if the kml file already exists 
if os.path.exists(kml + "\\" + shapeName + ".kml"): 
    arcpy.Delete_management(kml + "\\" + shapeName + ".kml") 
# 
os.rename(kml + "\\doc.kml",kml + "\\" + shapeName + ".kml") 
# 
#delete text file if it exists 
if os.path.exists(workspace + "\\" + username + ".txt"): 
    arcpy.Delete_management(workspace + "\\" + username + ".txt") 
# 
#Write to an existing text file to add new KML URL 
urldatabase = open("C:\\inetpub\\wwwroot\\userDirectories\\" + username + ".txt", "w") 
#Write one line into new text file which contains the url and time stamp separated by a comma. 
#This line is read by the “checkText.php” page which is initiated by JavaScript using jquery. 
urldatabase.write("http://digcrust.byu.edu/kml/" + shapeName + ".kml," + str(time.time())) 
# 
#close text file 
urldatabase.close() 
# 
###################################### 
#get a time stamp 
end = time.time() 
print "<br />Total run time: " + str(end - start) + " seconds" # print runtime 
# 
#show KML file location 
print "clamp: " + clamp 
print "Your KML file is at the following location:" 
print "http://digcrust.byu.edu/kml/" + shapeName + ".kml" 
# 
#give a statement for the PHP to check against 
print "finished" 

E.2 Creating a Geosection 

The subsections included here contain examples of code used for the geoprocessing 

routine. The code provided has been adjusted or minimized to show only what is most pertinent 

to the geoprocessing routine. The section title naming convention includes the coding language 
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used followed by a ‘-’ then the file name followed by a description in parentheses. The file 

names are included make reading the code easier because file names are integrated into the code. 

This section begins with a PHP page which is opened by the World Wind application 

developed for this project. The line of code in the application which accesses this PHP page from 

the application is part of the “LineBuilder” class in Appendix B.1.c. 

E.2.a  PHP - lonlatvar.php (sends processing request from application to server) 
This example shows code from only one PHP page rather than two PHP pages designed 

to show a waiting screen as in the geoprocessing routine to convert shapefile data to KML 

described in Section 3.3.1.1. 

<html> 
        <?php 
 //php getting python 
 ini_set('max_execution_time', 3000); //300 seconds = 5 minutes 
 ini_set('safe_mode',1); 
 $messages = array(); 
 $cmdstr = ""; 
 $a = 0; 
 //this loop gets the lat, lon coordinates from the URL and appends them to the 
 //$cmdstr variable which is used to pass variables to the Python code in the  
 //command line 
 while ($_GET["lon" . $a] != NULL) 
 { 
  $cmdstr = $cmdstr . " " . $_GET["lon" . $a] . " " . $_GET["lat" . $a]; 
  $a++; 
 } 
  
 //Below shows a path to the python executable installed by ArcGIS version 10.2 
 //then a space and the name of the Python script file. This file is shown as a relative location 
 //because it is in the same file location as this PHP page. If the Python file is else where the full 
 //file path should be used. Then a space is given and then the arguments to be passed to the python 
 //script all separated by spaces. 
 $pythonScript = "C:\Python27\ArcGIS10.2\python.exe PyToCsv.py" . $cmdstr;  
    
 exec($pythonScript, $messages); 
 //echo all of the print statements from Python and the command line 
 echo implode(“<br />”, $messages); 
        ?> 
</html> 

E.2.b  Python - PyToCsv.py (process for creating geosections using AHGW) 
# --------------------------------------------------------------------------- 
# xyToSec3.py 
# Created on: 2013-08-29 13:37:47.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Description: 
# --------------------------------------------------------------------------- 
#import necessary libraries 
import os 
import sys 
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import arcpy 
import zipfile 
# 
#set up workspace 
arcpy.env.workspace = "C:\\Horizons100" 
workspace = arcpy.env.workspace 
print "workspace set to: " + str(workspace) 
######################################## 
#Create a CSV file 
######################################## 
#create array of coordinates 
coord = sys.argv[1:] 
# 
#create variables for looping and check to make sure the list has 
#an even number of items 
i=0 
j=len(coord)-4 
if j%2 == 0: 
    #create csv file and headers 
    csvfile = open(workspace + "\\linecoordinates1.csv", "w") 
    csvfile.write("longitude1,latitude1,longitude2,latitude2"); 
    #loop through list of coordinates and write into csv file 
    while i<=j: 
        csvfile.write("\n" + coord[i] + "," + coord[i+1] + "," + coord[i+2] + "," + coord[i+3]) 
        i+=2 
    #close csv file 
    csvfile.close() 
    print "CSV file created" 
    if os.path.exists(workspace + "\\linecoordinates2.csv"): 
        print "existing file found" 
        os.remove(workspace + "\\linecoordinates2.csv") 
        print "Existing file deleted" 
    # 
    os.rename("C:\\inetpub\\wwwroot\\linecoordinates1.csv",workspace + "\\linecoordinates2.csv") 
    print "File was moved" 
else: 
    print "Must have an even number of arguments to execute." 
####################################### 
# Load required toolboxes 
arcpy.ImportToolbox(workspace + "\\DigcrustTools.tbx") 
 
#set Overwrite to true 
arcpy.env.overwriteOutput = True 
print "Overwrite set to: " + str(arcpy.env.overwriteOutput) 
 
# Local variables: 
dirDatabase = workspace + "\\Horizons.mdb" 
linecoordinates = workspace + "\\linecoordinates2.csv" 
SectionLine = dirDatabase + "\\Data\\SectionLine" 
UniqueID = dirDatabase + "\\UniqueID" 
GeoRasters = dirDatabase + "\\GeoRasters" 
GeoSection = dirDatabase + "\\Data\\GeoSection" 
xyLine_shp = workspace + "\\xyLine.shp" 
shapeName = "TestGeosection" 
LayerFile = workspace + "\\layers\\" + shapeName + "Lyr.lyr" 
KMZ = workspace + "\\kmz\\" + shapeName + ".kmz" 
KML = "C:\\inetpub\\wwwroot\\kml" 
print "Local variables set" 
 
# Process: XY To Line 
arcpy.XYToLine_management(linecoordinates, xyLine_shp, "longitude1", "latitude1", "longitude2", "latitude2", 

"GEODESIC", "", 
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"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Gree
nwich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-100000 10000;-100000 10000;8.98315284119522E-
09;0.001;0.001;IsHighPrecision") 

print "finished xy to line" 
# Process: Add Field 
arcpy.AddField_management(xyLine_shp, "HydroID", "DOUBLE", "", "", "", "", "NON_NULLABLE", 

"NON_REQUIRED", "") 
print "finished add field" 
# Process: Delete Rows 
arcpy.DeleteRows_management(SectionLine) 
print "section line rows deleted" 
# Process: Append 
arcpy.Append_management("C:\\Horizons100\\xyLine.shp", SectionLine, "NO_TEST", "HydroID \"HydroID\" true 

true false 4 Long 0 0 ,First,#,C:\\Horizons100\\xyLine.shp,HydroID,-1,-1;SName \"SName\" true true false 255 Text 0 0 
,First,#;HydroCode \"HydroCode\" true true false 255 Text 0 0 ,First,#;FType \"FType\" true true false 255 Text 0 0 
,First,#;VertExag2D \"Vertical Exaggeration\" true true false 8 Double 0 0 ,First,#;SHAPE_Length \"SHAPE_Length\" false true 
true 8 Double 0 0 ,First,#", "") 

print "append finished" 
# Process: Calculate Field 
arcpy.CalculateField_management(SectionLine, "VertExag2D", "20", "PYTHON", "") 
print "calculation finished" 
# Process: Assign HydroID GW 
arcpy.dct.AssignHydroIDGW(UniqueID,SectionLine,"HydroID","OVERWRITE") 
print "hydro id assigned" 
# Process: Rasters to GeoSections 
arcpy.dct.RastersToGeoSections(SectionLine, 

GeoRasters,"HorizonID",1000,GeoSection,"Clip","Fill","HGUID","OVERWRITE") 
print "rasters to geosections finished" 
 
#Create feature layer 
newLayer = arcpy.MakeFeatureLayer_management(GeoSection, workspace + "\\layers\\" + shapeName + "Lyr") 
print "feature layer made" 
# Process: Save To Layer File 
arcpy.SaveToLayerFile_management(newLayer, LayerFile) 
print "Layer file saved" # print lyr saved 
# Process: Layer to KML 
arcpy.LayerToKML_conversion(LayerFile,KMZ,"1","false","DEFAULT","1024","96","ABSOLUTE") 
print "GeoSection KMZ created" 
 
#see if a doc.kml file is there and delete it 
if os.path.exists(KML + "\\doc.kml"): 
    arcpy.Delete_management(KML + "\\doc.kml") 
    print "doc.kml File deleted" # print deleted 
#unzip file 
zipTest = zipfile.ZipFile(KMZ).extractall(KML) 
print "File unzipped" # print unzipped 
 
#rename unzipped file 
#see if the kml file already exists 
if os.path.exists(KML + "\\" + shapeName + ".kml"): 
    arcpy.Delete_management(KML + "\\" + shapeName + ".kml") 
    print shapeName + ".kml file deleted" # print deleted 
print "Passed deletion" # print deleteds 
os.rename(KML + "\\doc.kml", KML + "\\" + shapeName + ".kml") 
print "File renamed" # print renamed 
# 
print "Click <a href\"http://digcrust.byu.edu/kml/" + shapeName + ".kml\">here</a> to download your KML." 
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